Student Resources

Student Resources

CONTENTS

Science Skill Handbook 128
Scientific Methods 128
Identify a Question 128
Gather and Organize Information 128
Form a Hypothesis 131
Test the Hypothesis 132
Collect Data 132
Analyze the Data 135
Draw Conclusions 136
Communicate 136
Safety Symbols 137
Safety in the Science Laboratory 138
General Safety Rules 138
Prevent Accidents 138
Laboratory Work 138
Laboratory 139
Emergencies 139
Extra Try at Home Labs 140
Comparing Particles 140
Microscopic Crystals 140
Good and Bad Apples 141
Research Race 141
Technology Skill Handbook 142
Computer Skills 142
Use a Word Processing Program 142
Use a Database 143
Use the Internet 143
Use a Spreadsheet 144
Use Graphics Software 144
Presentation Skills 145
Develop Multimedia Presentations 145
Computer Presentations 145
Math Skill Handbook 146
Math Review 146
Use Fractions 146
Use Ratios 149
Use Decimals 150
Use Proportions 150
Use Percentages 151
Solve One-Step Equations 151
Use Statistics 152
Use Geometry 153
Science Applications 156
Measure in SI 156
Dimensional Analysis 156
Precision and Significant Digits 158
Scientific Notation 158
Make and Use Graphs 159
Reference Handbooks 161
Physical Science Reference Tables 161
Periodic Table of the Elements 162
Physical Science References 164
English/Spanish Glossary 165
Index 170
Credits 174

Science Skill Handbook

Scientific Methods

Scientists use an orderly approach called the scientific method to solve problems. This includes organizing and recording data so others can understand them. Scientists use many variations in this method when they solve problems.

Identify a Question

The first step in a scientific investigation or experiment is to identify a question to be answered or a problem to be solved. For example, you might ask which gasoline is the most efficient.

Gather and Organize Information

After you have identified your question, begin gathering and organizing information. There are many ways to gather information, such as researching in a library, interviewing those knowledgeable about the subject, testing and working in the laboratory and field. Fieldwork is investigations and observations done outside of a laboratory.

Researching Information Before moving in a new direction, it is important to gather the information that already is known about the subject. Start by asking yourself questions to determine exactly what you need to know. Then you will look for the information in various reference sources, like the student is doing in
Figure 1. Some sources may include textbooks, encyclopedias, government documents, professional journals, science magazines, and the Internet. Always list the sources of your information.

Figure 1 The Internet can be a valuable research tool.

Evaluate Sources of Information Not all

 sources of information are reliable. You should evaluate all of your sources of information, and use only those you know to be dependable. For example, if you are researching ways to make homes more energy efficient, a site written by the U.S. Department of Energy would be more reliable than a site written by a company that is trying to sell a new type of weatherproofing material. Also, remember that research always is changing. Consult the most current resources available to you. For example, a 1985 resource about saving energy would not reflect the most recent findings.Sometimes scientists use data that they did not collect themselves, or conclusions drawn by other researchers. This data must be evaluated carefully. Ask questions about how the data were obtained, if the investigation was carried out properly, and if it has been duplicated exactly with the same results. Would you reach the same conclusion from the data? Only when you have confidence in the data can you believe it is true and feel comfortable using it.

Science Skill Handbook

Interpret Scientific Illustrations As you research a topic in science, you will see drawings, diagrams, and photographs to help you understand what you read. Some illustrations are included to help you understand an idea that you can't see easily by yourself, like the tiny particles in an atom in
Figure 2. A drawing helps many people to remember details more easily and provides examples that clarify difficult concepts or give additional information about the topic you are studying. Most illustrations have labels or a caption to identify or to provide more information.

Figure 2 This drawing shows an atom of carbon with its six protons, six neutrons, and six electrons.

Concept Maps One way to organize data is to draw a diagram that shows relationships among ideas (or concepts). A concept map can help make the meanings of ideas and terms more clear, and help you understand and remember what you are studying. Concept maps are useful for breaking large concepts down into smaller parts, making learning easier.

Network Tree A type of concept map that not only shows a relationship, but how the concepts are related is a network tree, shown in Figure 3. In a network tree, the words are written in the ovals, while the description of the type of relationship is written across the connecting lines.

When constructing a network tree, write down the topic and all major topics on separate pieces of paper or notecards. Then arrange them in order from general to specific. Branch the related concepts from the major concept and describe the relationship on the connecting line. Continue to more specific concepts until finished.

Figure 3 A network tree shows how concepts or objects are related.

Events Chain Another type of concept map is an events chain. Sometimes called a flow chart, it models the order or sequence of items. An events chain can be used to describe a sequence of events, the steps in a procedure, or the stages of a process.

When making an events chain, first find the one event that starts the chain. This event is called the initiating event. Then, find the next event and continue until the outcome is reached, as shown in Figure 4.

Figure 4 Events-chain concept maps show the order of steps in a process or event. This concept map shows how a sound makes an echo.

Cycle Map A specific type of events chain is a cycle map. It is used when the series of events do not produce a final outcome, but instead relate back to the beginning event, such as in Figure 5. Therefore, the cycle repeats itself.

To make a cycle map, first decide what event is the beginning event. This is also called the initiating event. Then list the next events in the order that they occur, with the last event relating back to the initiating event. Words can be written between the events that describe what happens from one event to the next. The number of events in a cycle map can vary, but usually contain three or more events.

Figure 5 A cycle map shows events that occur in a cycle.

Spider Map A type of concept map that you can use for brainstorming is the spider map. When you have a central idea, you might find that you have a jumble of ideas that relate to it but are not necessarily clearly related to each other. The spider map on sound in Figure 6 shows that if you write these ideas outside the main concept, then you can begin to separate and group unrelated terms so they become more useful.

Figure 6 A spider map allows you to list ideas that relate to a central topic but not necessarily to one another.

Science Skill Handbook

Figure 7 This Venn diagram compares and contrasts two substances made from carbon.

Venn Diagram To illustrate how two subjects compare and contrast you can use a Venn diagram. You can see the characteristics that the subjects have in common and those that they do not, shown in

Figure 7.

To create a Venn diagram, draw two overlapping ovals that that are big enough to write in. List the characteristics unique to one subject in one oval, and the characteristics of the other subject in the other oval. The characteristics in common are listed in the overlapping section.

Make and Use Tables One way to organize information so it is easier to understand is to use a table. Tables can contain numbers, words, or both.

To make a table, list the items to be compared in the first column and the characteristics to be compared in the first row. The title should clearly indicate the content of the table, and the column or row heads should be clear. Notice that in Table 1 the units are included.

Table 1 Recyclables Collected During Week			
Day of Week	Paper $(\mathbf{k g})$	Aluminum $(\mathbf{k g})$	Glass $(\mathbf{k g})$
Monday	5.0	4.0	12.0
Wednesday	4.0	1.0	10.0
Friday	2.5	2.0	10.0

Make a Model One way to help you better understand the parts of a structure, the way a process works, or to show things too large or small for viewing is to make a model. For example, an atomic model made of a plasticball nucleus and pipe-cleaner electron shells can help you visualize how the parts of an atom relate to each other. Other types of models can by devised on a computer or represented by equations.

Form a Hypothesis

A possible explanation based on previous knowledge and observations is called a hypothesis. After researching gasoline types and recalling previous experiences in your family's car you form a hypothesis-our car runs more efficiently because we use premium gasoline. To be valid, a hypothesis has to be something you can test by using an investigation.

Predict When you apply a hypothesis to a specific situation, you predict something about that situation. A prediction makes a statement in advance, based on prior observation, experience, or scientific reasoning. People use predictions to make everyday decisions. Scientists test predictions by performing investigations. Based on previous observations and experiences, you might form a prediction that cars are more efficient with premium gasoline. The prediction can be tested in an investigation.

Design an Experiment A scientist needs to make many decisions before beginning an investigation. Some of these include: how to carry out the investigation, what steps to follow, how to record the data, and how the investigation will answer the question. It also is important to address any safety concerns.

Science Skill Handbook

Test the Hypothesis

Now that you have formed your hypothesis, you need to test it. Using an investigation, you will make observations and collect data, or information. This data might either support or not support your hypothesis. Scientists collect and organize data as numbers and descriptions.

Follow a Procedure In order to know what materials to use, as well as how and in what order to use them, you must follow a procedure. Figure 8 shows a procedure you might follow to test your hypothesis.

Procedure

1. Use regular gasoline for two weeks.
2. Record the number of kilometers between fill-ups and the amount of gasoline used.
3. Switch to premium gasoline for two weeks.
4. Record the number of kilometers between fill-ups and the amount of gasoline used.

Figure 8 A procedure tells you what to do step by step.

Identify and Manipulate Variables and

 Controls In any experiment, it is important to keep everything the same except for the item you are testing. The one factor you change is called the independent variable. The change that results is the dependent variable. Make sure you have only one independent variable, to assure yourself of the cause of the changes you observe in the dependent variable. For example, in your gasoline experiment the type of fuel is the independent variable. The dependent variable is the efficiency.Many experiments also have a controlan individual instance or experimental subject for which the independent variable is not changed. You can then compare the test results to the control results. To design a control you can have two cars of the same type. The control car uses regular gasoline for four weeks. After you are done with the test, you can compare the experimental results to the control results.

Collect Data

Whether you are carrying out an investigation or a short observational experiment, you will collect data, as shown in Figure 9. Scientists collect data as numbers and descriptions and organize it in specific ways.

Observe Scientists observe items and events, then record what they see. When they use only words to describe an observation, it is called qualitative data. Scientists' observations also can describe how much there is of something. These observations use numbers, as well as words, in the description and are called quantitative data. For example, if a sample of the element gold is described as being "shiny and very dense" the data are qualitative. Quantitative data on this sample of gold might include "a mass of 30 g and a density of $19.3 \mathrm{~g} / \mathrm{cm}^{3}$."

Figure 9 Collecting data is one way to gather information directly.

Science Skill Handbook

Figure 10 Record data neatly and clearly so it is easy to understand.

When you make observations you should examine the entire object or situation first, and then look carefully for details. It is important to record observations accurately and completely. Always record your notes immediately as you make them, so you do not miss details or make a mistake when recording results from memory. Never put unidentified observations on scraps of paper. Instead they should be recorded in a notebook, like the one in Figure 10. Write your data neatly so you can easily read it later. At each point in the experiment, record your observations and label them. That way, you will not have to determine what the figures mean when you look at your notes later. Set up any tables that you will need to use ahead of time, so you can record any observations right away. Remember to avoid bias when collecting data by not including personal thoughts when you record observations. Record only what you observe.

Estimate Scientific work also involves estimating. To estimate is to make a judgment about the size or the number of something without measuring or counting. This is important when the number or size of an object or population is too large or too difficult to accurately count or measure.

Sample Scientists may use a sample or a portion of the total number as a type of estimation. To sample is to take a small, representative portion of the objects or organisms of a population for research. By making careful observations or manipulating variables within that portion of the group, information is discovered and conclusions are drawn that might apply to the whole population. A poorly chosen sample can be unrepresentative of the whole. If you were trying to determine the rainfall in an area, it would not be best to take a rainfall sample from under a tree.

Measure You use measurements everyday. Scientists also take measurements when collecting data. When taking measurements, it is important to know how to use measuring tools properly. Accuracy also is important.

Length To measure length, the distance between two points, scientists use meters. Smaller measurements might be measured in centimeters or millimeters.

Length is measured using a metric ruler or meter stick. When using a metric ruler, line up the $0-\mathrm{cm}$ mark with the end of the object being measured and read the number of the unit where the object ends. Look at the metric ruler shown in Figure 11. The centimeter lines are the long, numbered lines, and the shorter lines are millimeter lines. In this instance, the length would be 4.50 cm .

Figure 11 This metric ruler has centimeter and millimeter divisions.

Science Skill Handbook

Mass The SI unit for mass is the kilogram (kg). Scientists can measure mass using units formed by adding metric prefixes to the unit gram (g), such as milligram (mg). To measure mass, you might use a triple-beam balance similar to the one shown in Figure 12. The balance has a pan on one side and a set of beams on the other side. Each beam has a rider that slides on the beam.

When using a triple-beam balance, place an object on the pan. Slide the largest rider along its beam until the pointer drops below zero. Then move it back one notch. Repeat the process for each rider proceeding from the larger to smaller until the pointer swings an equal distance above and below the zero point. Sum the masses on each beam to find the mass of the object. Move all riders back to zero when finished.

Instead of putting materials directly on the balance, scientists often take a tare of a container. A tare is the mass of a container into which objects or substances are placed for measuring their masses. To mass objects or substances, find the mass of a clean container. Remove the container from the pan, and place the object or substances in the container. Find the mass of the container with the materials in it. Subtract the mass of the empty container from the mass of the filled container to find the mass of the materials you are using.

Figure 12 A triple-beam balance is used to determine the mass of an object.

Figure 13 Graduated cylinders measure liquid volume.

Liquid Volume To measure liquids, the unit used is the liter. When a smaller unit is needed, scientists might use a milliliter. Because a milliliter takes up the volume of a cube measuring 1 cm on each side it also can be called a cubic centimeter $\left(\mathrm{cm}^{3}=\mathrm{cm} \times\right.$ $\mathrm{cm} \times \mathrm{cm}$).

You can use beakers and graduated cylinders to measure liquid volume. A graduated cylinder, shown in Figure 13, is marked from bottom to top in milliliters. In lab, you might use a $10-\mathrm{mL}$ graduated cylinder or a $100-\mathrm{mL}$ graduated cylinder. When measuring liquids, notice that the liquid has a curved surface. Look at the surface at eye level, and measure the bottom of the curve. This is called the meniscus. The graduated cylinder in Figure 13 contains 79.0 mL , or $79.0 \mathrm{~cm}^{3}$, of a liquid.

Temperature Scientists often measure temperature using the Celsius scale. Pure water has a freezing point of $0^{\circ} \mathrm{C}$ and boiling point of $100^{\circ} \mathrm{C}$. The unit of measurement is degrees Celsius. Two other scales often used are the Fahrenheit and Kelvin scales.

Science Skill Handbook

Figure 14 A thermometer measures the temperature of an object.

Scientists use a thermometer to measure temperature. Most thermometers in a laboratory are glass tubes with a bulb at the bottom end containing a liquid such as colored alcohol. The liquid rises or falls with a change in temperature. To read a glass thermometer like the thermometer in Figure 14, rotate it slowly until a red line appears. Read the temperature where the red line ends.

Form Operational Definitions An operational definition defines an object by how it functions, works, or behaves. For example, when you are playing hide and seek and a tree is home base, you have created an operational definition for a tree.

Objects can have more than one operational definition. For example, a ruler can be defined as a tool that measures the length of an object (how it is used). It can also be a tool with a series of marks used as a standard when measuring (how it works).

Analyze the Data

To determine the meaning of your observations and investigation results, you will need to look for patterns in the data. Then you must think critically to determine what the data mean. Scientists use several approaches when they analyze the data they have collected and recorded. Each approach is useful for identifying specific patterns.

Interpret Data The word interpret means "to explain the meaning of something." When analyzing data from an experiement, try to find out what the data show. Identify the control group and the test group to see whether or not changes in the independent variable have had an effect. Look for differences in the dependent variable between the control and test groups.

Classify Sorting objects or events into groups based on common features is called classifying. When classifying, first observe the objects or events to be classified. Then select one feature that is shared by some members in the group, but not by all. Place those members that share that feature in a subgroup. You can classify members into smaller and smaller subgroups based on characteristics. Remember that when you classify, you are grouping objects or events for a purpose. Keep your purpose in mind as you select the features to form groups and subgroups.

Compare and Contrast Observations can be analyzed by noting the similarities and differences between two more objects or events that you observe. When you look at objects or events to see how they are similar, you are comparing them. Contrasting is looking for differences in objects or events.

Science Skill Handbook

Recognize Cause and Effect A cause is a reason for an action or condition. The effect is that action or condition. When two events happen together, it is not necessarily true that one event caused the other. Scientists must design a controlled investigation to recognize the exact cause and effect.

Draw Conclusions

When scientists have analyzed the data they collected, they proceed to draw conclusions about the data. These conclusions are sometimes stated in words similar to the hypothesis that you formed earlier. They may confirm a hypothesis, or lead you to a new hypothesis.

Infer Scientists often make inferences based on their observations. An inference is an attempt to explain observations or to indicate a cause. An inference is not a fact, but a logical conclusion that needs further investigation. For example, you may infer that a fire has caused smoke. Until you investigate, however, you do not know for sure.

Apply When you draw a conclusion, you must apply those conclusions to determine whether the data supports the hypothesis. If your data do not support your hypothesis, it does not mean that the hypothesis is wrong. It means only that the result of the investigation did not support the hypothesis. Maybe the experiment needs to be redesigned, or some of the initial observations on which the hypothesis was based were incomplete or biased. Perhaps more observation or research is needed to refine your hypothesis. A successful investigation does not always come out the way you originally predicted.

Avoid Bias Sometimes a scientific investigation involves making judgments. When you make a judgment, you form an opinion. It is important to be honest and not to allow any expectations of results to bias your judgments. This is important throughout the entire investigation, from researching to collecting data to drawing conclusions.

Communicate

The communication of ideas is an important part of the work of scientists. A discovery that is not reported will not advance the scientific community's understanding or knowledge. Communication among scientists also is important as a way of improving their investigations.

Scientists communicate in many ways, from writing articles in journals and magazines that explain their investigations and experiments, to announcing important discoveries on television and radio. Scientists also share ideas with colleagues on the Internet or present them as lectures, like the student is doing in Figure 15.

Figure 15 A student communicates to his peers about his investigation.

SAFETY SYMBOLS

HAZARD

Special disposal procedures need to be followed.

Organisms or other biological materials that might be harmful to humans

Objects that can burn skin by being too cold or too hot

Use of tools or glassware that can easily puncture or slice skin

Possible danger to respiratory tract from fumes

Substances that can irritate the skin or mucous membranes of the respiratory tract

Chemicals can react with and destroy tissue and other materials
Possible danger from electrical shock or burn
-

Substance may be poisonous if touched, inhaled, or swallowed.

Flammable chemicals may be ignited by open flame, spark, or exposed heat.

Open flame in use, may cause fire.

EXAMPLES

certain chemicals, living organisms
bacteria, fungi, blood, unpreserved tissues, plant materials
boiling liquids, hot plates, dry ice, liquid nitrogen
razor blades, pins, scalpels, pointed tools, dissecting probes, broken glass
ammonia, acetone, nail polish remover, heated sulfur, moth balls
improper grounding, liquid spills, short circuits, exposed wires
pollen, moth balls, steel wool, fiberglass, potassium permanganate
bleaches such as hydrogen peroxide; acids such as sulfuric acid, hydrochloric acid; bases such as ammonia, sodium hydroxide
mercury, many metal compounds, iodine, poinsettia plant parts
alcohol, kerosene, potassium permanganate
hair, clothing, paper, synthetic materials

PRECAUTION

Do not dispose of these materials in the sink or trash can.

Avoid skin contact with these materials. Wear mask or gloves.

Use proper protection when handling.

Practice commonsense behavior and follow guidelines for use of the tool.

Make sure there is good ventilation. Never smell fumes directly. Wear a mask.

Double-check setup with teacher. Check condition of wires and apparatus.

Wear dust mask and gloves. Practice extra care when handling these materials.

Wear goggles, gloves, and an apron.

Follow your teacher's instructions.

Avoid open flames and heat when using flammable chemicals.

Tie back hair and loose clothing. Follow teacher's instruction on lighting and extinguishing flames.

REMEDY

Dispose of wastes as directed by your teacher.

Notify your teacher if you suspect contact with material. Wash hands thoroughly.
Go to your teacher for first aid.

Go to your teacher for first aid.

Leave foul area and notify your teacher immediately.

Do not attempt to fix electrical problems. Notify your teacher immediately.

Go to your teacher for first aid.

Immediately flush the affected area with water and notify your teacher.

Always wash hands thoroughly after use. Go to your teacher for first aid.

Notify your teacher immediately. Use fire safety equipment if applicable.

Notify your teacher immediately. Use fire safety equipment if applicable.

Eye Safety

Proper eye protection should be worn at all times by anyone performing or observing science activities.

Animal Safety This symbol appears when safety of animals and students must be ensured.

Handwashing
After the lab, wash hands with soap and water before removing goggles.

Science Skill Handbook

Safety in the Science Laboratory

The science laboratory is a safe place to work if you follow standard safety procedures. Being responsible for your own safety helps to make the entire laboratory a safer place for everyone. When performing any lab, read and apply the caution statements and safety symbol listed at the beginning of the lab.

General Safety Rules

1. Obtain your teacher's permission to begin all investigations and use laboratory equipment.
2. Study the procedure. Ask your teacher any questions. Be sure you understand safety symbols shown on the page.
3. Notify your teacher about allergies or other health conditions which can affect your participation in a lab.
4. Learn and follow use and safety procedures for your equipment. If unsure, ask your teacher.

5. Never eat, drink, chew gum, apply cosmetics, or do any personal grooming in the lab. Never use lab glassware as food or drink containers. Keep your hands away from your face and mouth.
6. Know the location and proper use of the safety shower, eye wash, fire blanket, and fire alarm.

Prevent Accidents

1. Use the safety equipment provided to you. Goggles and a safety apron should be worn during investigations.
2. Do NOT use hair spray, mousse, or other flammable hair products. Tie back long hair and tie down loose clothing.
3. Do NOT wear sandals or other opentoed shoes in the lab.
4. Remove jewelry on hands and wrists. Loose jewelry, such as chains and long necklaces, should be removed to prevent them from getting caught in equipment.
5. Do not taste any substances or draw any material into a tube with your mouth.
6. Proper behavior is expected in the lab. Practical jokes and fooling around can lead to accidents and injury.
7. Keep your work area uncluttered.

Laboratory Work

1. Collect and carry all equipment and materials to your work area before beginning a lab.
2. Remain in your own work area unless given permission by your teacher to leave it.

Science Skill Handbook

3. Always slant test tubes away from yourself and others when heating them, adding substances to them, or rinsing them.
4. If instructed to smell a substance in a container, hold the container a short distance away and fan vapors towards your nose.
5. Do NOT substitute other chemicals/substances for those in the materials list unless instructed to do so by your teacher.
6. Do NOT take any materials or chemicals outside of the laboratory.
7. Stay out of storage areas unless instructed to be there and supervised by your teacher.

Laboratory Cleanup

1. Turn off all burners, water, and gas, and disconnect all electrical devices.
2. Clean all pieces of equipment and return all materials to their proper places.
3. Dispose of chemicals and other materials as directed by your teacher. Place broken glass and solid substances in the proper containers. Never discard materials in the sink.
4. Clean your work area.
5. Wash your hands with soap and water thoroughly BEFORE removing your goggles.

Emergencies

1. Report any fire, electrical shock, glassware breakage, spill, or injury, no matter how small, to your teacher immediately. Follow his or her instructions.
2. If your clothing should catch fire, STOP, DROP, and ROLL. If possible, smother it with the fire blanket or get under a safety shower. NEVER RUN.
3. If a fire should occur, turn off all gas and leave the room according to established procedures.
4. In most instances, your teacher will clean up spills. Do NOT attempt to clean up spills unless you are given permission and instructions to do so.
5. If chemicals come into contact with your eyes or skin, notify your teacher immediately. Use the eyewash or flush your skin or eyes with large quantities of water.
6. The fire extinguisher and first-aid kit should only be used by your teacher unless it is an extreme emergency and you have been given permission.
7. If someone is injured or becomes ill, only a professional medical provider or someone certified in first aid should perform first-aid procedures.

Extra Try at Home Labs

EXTRA ixim Labs

From Your Kitchen, Junk Drawer, or Yard

1) Comparing Particles

Real-World Question

How do the masses of an electron, neutron, and proton compare?

Possible Materials ع ع

- large, self-sealing plastic bags or clear 2-L bottles (6)
- liquid measuring cup
- marker
- large poster paper

P Procedure

1. Measure exactly 1 mL of water into a plastic bag. Seal it. Write Electron on it. Make another bag exactly the same.
2. Measure exactly $1,837 \mathrm{~mL}$ into another plastic bag. Seal it. Write Proton on it. Make another bag exactly the same.
3. Measure exactly $1,839 \mathrm{~mL}$ into anotherplastic bag. Seal it. Write Neutron on it. Make another bag exactly the same.
4. Draw a large helium atom on the paper. Put the four bags representing two neutrons and the two protons in the central nucleus. Put the two electron bags at a distance from the nucleus, representing their orbit around the nucleus.
\oplus Conclude and Apply
5. Compare the mass of the proton and neutron.
6. Infer why nearly all the mass of an atom is located in its nucleus.

(2) Microscopic Crystals

Real-World Question

What do crystalline and non-crystalline solids look like under a magnifying lens?

Possible Materials 司

- salt or sugar - bowl
- pepper • spoon
- magnifying • measuring cup lens
- paper
© Procedure

1. Pour 10 mL of salt into a bowl and grind the salt into small, powdery pieces with the back of the spoon.
2. Sprinkle a few grains of salt from the bowl onto a piece of paper and view the salt grains with the magnifying lens.
3. Clean out the bowl.
4. Pour 10 mL of pepper into the bowl and grind it into powder with the spoon.
5. Sprinkle a few grains of pepper from the bowl onto the paper and view the grains with the magnifying lens.
\oplus Conclude and Apply
6. Compare the difference between the salt and pepper grains under the magnifying lens.
7. Describe what a crystal is.

Extra Try at Home Labs

3 Good and Bad Apples

Real-World Question

How can the chemical reaction that turns apples brown be stopped?

Possible Materials 드 Fiver

- apple - cola
- concentrated - bowls (5)
lemon juice • measuring cup
- orange juice - kitchen knife
- vitamin C tablet - paper plates (6) (1000 mg)
- black marker
- water

9 Procedure

1. Cut an apple into six equal slices.
2. Place one slice on a paper plate and label the plate Untreated.
3. Pour 100 mL of water into the first two bowls.
4. Dissolve a vitamin C tablet in the second bowl of water.
5. Pour 100 mL lemon juice, 100 mL of orange juice, and 100 mL of cola into the three remaining bowls.
6. Submerge an apple slice in each bowl for 10 min .
7. Label your other five plates Water, Vitamin C Water, Lemon Juice, Orange Juice, and Cola.
8. Take your apple wedges out of the bowls, place them on their correct plates. Observe the slices after one hour.
© Conclude and Apply
9. Describe the results of your experiment.
10. Infer why some apple slices did not turn brown after being submerged.

4. Research Race

Real-World Question

How many secrets of the periodic table's elements can you find by research?

Possible Materials

- reference materials
- access to library
\Leftrightarrow Procedure

1. Get together with a team of your friends. Look at the Race Questions and divide them between you.
2. Try to get as many answers as you can in a certain amount of time.
3. Be sure to keep a record of each resource. You get a point for each correct answer. You also get a point for each properly listed book, magazine, or Web site that you list.

Race Questions:

- List colored compounds of transition metals.
- List uses of colored transition metal compounds.
- List elements that are dangerous to human health, especially heavy metals. Where are they found in society?
- List elements that are needed for human health. What food sources are each found in?
- List any other interesting information about elements that show up as you do your research.

© Conclude and Apply

1. Which resources did you find most helpful?
2. Name an interesting fact you found.

Technology Skill Handbook

Computer Skills

People who study science rely on computers, like the one in Figure 16, to record and store data and to analyze results from investigations. Whether you work in a laboratory or just need to write a lab report with tables, good computer skills are a necessity.

Using the computer comes with responsibility. Issues of ownership, security, and privacy can arise. Remember, if you did not author the information you are using, you must provide a source for your information. Also, anything on a computer can be accessed by others. Do not put anything on the computer that you would not want everyone to know. To add more security to your work, use a password.

Use a Word Processing Program

A computer program that allows you to type your information, change it as many times as you need to, and then print it out is called a word processing program. Word processing programs also can be used to make tables.

Figure 16 A computer will make reports neater and more professional looking.

Learn the Skill To start your word processing program, a blank document, sometimes called "Document 1," appears on the screen. To begin, start typing. To create a new document, click the New button on the standard tool bar. These tips will help you format the document.

- The program will automatically move to the next line; press Enter if you wish to start a new paragraph.
- Symbols, called non-printing characters, can be hidden by clicking the Show/Hide button on your toolbar.
- To insert text, move the cursor to the point where you want the insertion to go, click on the mouse once, and type the text.
- To move several lines of text, select the text and click the Cut button on your toolbar. Then position your cursor in the location that you want to move the cut text and click Paste. If you move to the wrong place, click Undo.
- The spell check feature does not catch words that are misspelled to look like other words, like "cold" instead of "gold." Always reread your document to catch all spelling mistakes.
- To learn about other word processing methods, read the user's manual or click on the Help button.
- You can integrate databases, graphics, and spreadsheets into documents by copying from another program and pasting it into your document, or by using desktop publishing (DTP). DTP software allows you to put text and graphics together to finish your document with a professional look. This software varies in how it is used and its capabilities.

Technology Skill Handbook

Use a Database

A collection of facts stored in a computer and sorted into different fields is called a database. A database can be reorganized in any way that suits your needs.

Learn the Skill A computer program that allows you to create your own database is a database management system (DBMS). It allows you to add, delete, or change information. Take time to get to know the features of your database software.

- Determine what facts you would like to include and research to collect your information.
- Determine how you want to organize the information.
- Follow the instructions for your particular DBMS to set up fields. Then enter each item of data in the appropriate field.
- Follow the instructions to sort the information in order of importance.
- Evaluate the information in your database, and add, delete, or change as necessary.

Use the Internet

The Internet is a global network of computers where information is stored and shared. To use the Internet, like the students in Figure 17, you need a modem to connect your computer to a phone line and an Internet Service Provider account.

Learn the Skill To access internet sites and information, use a "Web browser," which lets you view and explore pages on the World Wide Web. Each page is its own site, and each site has its own address, called a URL. Once you have found a Web browser, follow these steps for a search (this also is how you search a database).

Figure 17 The Internet allows you to search a global network for a variety of information.

- Be as specific as possible. If you know you want to research "gold," don't type in "elements." Keep narrowing your search until you find what you want.
- Web sites that end in .com are commercial Web sites; .org, .edu, and .gov are nonprofit, educational, or government Web sites.
- Electronic encyclopedias, almanacs, indexes, and catalogs will help locate and select relevant information.
- Develop a "home page" with relative ease. When developing a Web site, NEVER post pictures or disclose personal information such as location, names, or phone numbers. Your school or community usually can host your Web site. A basic understanding of HTML (hypertext mark-up language), the language of Web sites, is necessary. Software that creates HTML code is called authoring software, and can be downloaded free from many Web sites. This software allows text and pictures to be arranged as the software is writing the HTML code.

Technology Skill Handbook

Use a Spreadsheet

A spreadsheet, shown in Figure 18, can perform mathematical functions with any data arranged in columns and rows. By entering a simple equation into a cell, the program can perform operations in specific cells, rows, or columns.

Learn the Skill Each column (vertical) is assigned a letter, and each row (horizontal) is assigned a number. Each point where a row and column intersect is called a cell, and is labeled according to where it is locatedColumn A, Row 1 (A1).

- Decide how to organize the data, and enter it in the correct row or column.
- Spreadsheets can use standard formulas or formulas can be customized to calculate cells.
- To make a change, click on a cell to make it activate, and enter the edited data or formula.
- Spreadsheets also can display your results in graphs. Choose the style of graph that best represents the data.

Figure 18 A spreadsheet allows you to perform mathematical operations on your data.

Use Graphics Software

Adding pictures, called graphics, to your documents is one way to make your documents more meaningful and exciting. This software adds, edits, and even constructs graphics. There is a variety of graphics software programs. The tools used for drawing can be a mouse, keyboard, or other specialized devices. Some graphics programs are simple. Others are complicated, called computer-aided design (CAD) software.

Learn the Skill It is important to have an understanding of the graphics software being used before starting. The better the software is understood, the better the results. The graphics can be placed in a word-processing document.

- Clip art can be found on a variety of internet sites, and on CDs. These images can be copied and pasted into your document.
- When beginning, try editing existing drawings, then work up to creating drawings.
- The images are made of tiny rectangles of color called pixels. Each pixel can be altered.
- Digital photography is another way to add images. The photographs in the memory of a digital camera can be downloaded into a computer, then edited and added to the document.
- Graphics software also can allow animation. The software allows drawings to have the appearance of movement by connecting basic drawings automatically. This is called in-betweening, or tweening.
- Remember to save often.

Technology Skill Handbook

Presentation Skills

Develop Multimedia Presentations

Most presentations are more dynamic if they include diagrams, photographs, videos, or sound recordings, like the one shown in Figure 19. A multimedia presentation involves using stereos, overhead projectors, televisions, computers, and more.

Learn the Skill Decide the main points of your presentation, and what types of media would best illustrate those points.

- Make sure you know how to use the equipment you are working with.
- Practice the presentation using the equipment several times.
- Enlist the help of a classmate to push play or turn lights out for you. Be sure to practice your presentation with him or her.
- If possible, set up all of the equipment ahead of time, and make sure everything is working properly.

Figure 19 These students are engaging the audience using a variety of tools.

Computer Presentations

There are many different interactive computer programs that you can use to enhance your presentation. Most computers have a compact disc (CD) drive that can play both CDs and digital video discs (DVDs). Also, there is hardware to connect a regular CD, DVD, or VCR. These tools will enhance your presentation.

Another method of using the computer to aid in your presentation is to develop a slide show using a computer program. This can allow movement of visuals at the presenter's pace, and can allow for visuals to build on one another.

Learn the Skill In order to create multimedia presentations on a computer, you need to have certain tools. These may include traditional graphic tools and drawing programs, animation programs, and authoring systems that tie everything together. Your computer will tell you which tools it supports. The most important step is to learn about the tools that you will be using.

- Often, color and strong images will convey a point better than words alone. Use the best methods available to convey your point.
- As with other presentations, practice many times.
- Practice your presentation with the tools you and any assistants will be using.
- Maintain eye contact with the audience. The purpose of using the computer is not to prompt the presenter, but to help the audience understand the points of the presentation.

Math Review

Use Fractions

A fraction compares a part to a whole. In the fraction $\frac{2}{3}$, the 2 represents the part and is the numerator. The 3 represents the whole and is the denominator.

Reduce Fractions To reduce a fraction, you must find the largest factor that is common to both the numerator and the denominator, the greatest common factor (GCF). Divide both numbers by the GCF. The fraction has then been reduced, or it is in its simplest form.

Example Twelve of the 20 chemicals in the science lab are in powder form. What fraction of the chemicals used in the lab are in powder form?
Step 1 Write the fraction.

$$
\frac{\text { part }}{\text { whole }}=\frac{12}{20}
$$

Step 2 To find the GCF of the numerator and denominator, list all of the factors of each number. Factors of $12: 1,2,3,4,6,12$ (the numbers that divide evenly into 12)
Factors of $20: 1,2,4,5,10,20$ (the numbers that divide evenly into 20)

Step 3 List the common factors.
$1,2,4$.
Step 4 Choose the greatest factor in the list. The GCF of 12 and 20 is 4 .

Step 5 Divide the numerator and denominator by the GCF.

$$
\frac{12 \div 4}{20 \div 4}=\frac{3}{5}
$$

In the lab, $\frac{3}{5}$ of the chemicals are in powder form.
Practice Problem At an amusement park, 66 of 90 rides have a height restriction. What fraction of the rides, in its simplest form, has a height restriction?

Add and Subtract Fractions To add or subtract fractions with the same denominator, add or subtract the numerators and write the sum or difference over the denominator. After finding the sum or difference, find the simplest form for your fraction.

Example 1 In the forest outside your house, $\frac{1}{8}$ of the animals are rabbits, $\frac{3}{8}$ are squirrels, and the remainder are birds and insects. How many are mammals?
Step 1 Add the numerators.

$$
\frac{1}{8}+\frac{3}{8}=\frac{(1+3)}{8}=\frac{4}{8}
$$

Step 2 Find the GCF. $\frac{4}{8}$ (GCF, 4)
Step 3 Divide the numerator and denominator by the GCF.
$\frac{4}{4}=1, \frac{8}{4}=2$
$\frac{1}{2}$ of the animals are mammals.
Example 2 If $\frac{7}{16}$ of the Earth is covered by freshwater, and $\frac{1}{16}$ of that is in glaciers, how much freshwater is not frozen?

Step 1 Subtract the numerators.

$$
\frac{7}{16}-\frac{1}{16}=\frac{(7-1)}{16}=\frac{6}{16}
$$

Step 2 Find the GCF.
$\frac{6}{16}(G C F, 2)$
Step 3 Divide the numerator and denominator by the GCF.
$\frac{6}{2}=3, \frac{16}{2}=8$
$\frac{3}{8}$ of the freshwater is not frozen.
Practice Problem A bicycle rider is going $15 \mathrm{~km} / \mathrm{h}$ for $\frac{4}{9}$ of his ride, $10 \mathrm{~km} / \mathrm{h}$ for $\frac{2}{9}$ of his ride, and $8 \mathrm{~km} / \mathrm{h}$ for the remainder of the ride. How much of his ride is he going over $8 \mathrm{~km} / \mathrm{h}$?

Math Skill Handbook

Unlike Denominators To add or subtract fractions with unlike denominators, first find the least common denominator (LCD). This is the smallest number that is a common multiple of both denominators. Rename each fraction with the LCD, and then add or subtract. Find the simplest form if necessary.

Example 1 A chemist makes a paste that is $\frac{1}{2}$ table salt (NaCl), $\frac{1}{3}$ sugar $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$, and the rest water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. How much of the paste is a solid?

Step 1 Find the LCD of the fractions.

$$
\frac{1}{2}+\frac{1}{3}(\mathrm{LCD}, 6)
$$

Step 2 Rename each numerator and each denominator with the LCD.

$$
\begin{aligned}
& 1 \times 3=3, \quad 2 \times 3=6 \\
& 1 \times 2=2, \quad 3 \times 2=6
\end{aligned}
$$

Step 3 Add the numerators.

$$
\frac{3}{6}+\frac{2}{6}=\frac{(3+2)}{6}=\frac{5}{6}
$$

$\frac{5}{6}$ of the paste is a solid.
Example 2 The average precipitation in Grand Junction, CO, is $\frac{7}{10}$ inch in November, and $\frac{3}{5}$ inch in December. What is the total average precipitation?

Step 1 Find the LCD of the fractions.

$$
\frac{7}{10}+\frac{3}{5}(\mathrm{LCD}, 10)
$$

Step 2 Rename each numerator and each denominator with the LCD.

$$
\begin{aligned}
& 7 \times 1=7, \quad 10 \times 1=10 \\
& 3 \times 2=6,5 \times 2=10
\end{aligned}
$$

Step 3 Add the numerators.

$$
\frac{7}{10}+\frac{6}{10}=\frac{(7+6)}{10}=\frac{13}{10}
$$

$\frac{13}{10}$ inches total precipitation, or $1 \frac{3}{10}$ inches.
Practice Problem On an electric bill, about $\frac{1}{8}$ of the energy is from solar energy and about $\frac{1}{10}$ is from wind power. How much of the total bill is from solar energy and wind power combined?

Example 3 In your body, $\frac{7}{10}$ of your muscle contractions are involuntary (cardiac and smooth muscle tissue). Smooth muscle makes $\frac{3}{15}$ of your muscle contractions. How many of your muscle contractions are made by cardiac muscle?

Step 1 Find the LCD of the fractions.
$\frac{7}{10}-\frac{3}{15}(L C D, 30)$
Step 2 Rename each numerator and each denominator with the LCD.
$7 \times 3=21,10 \times 3=30$
$3 \times 2=6,15 \times 2=30$
Step 3 Subtract the numerators.
$\frac{21}{30}-\frac{6}{30}=\frac{(21-6)}{30}=\frac{15}{30}$
Step 4 Find the GCF.
$\frac{15}{30}(G C F, 15)$
$\frac{1}{2}$
$\frac{1}{2}$ of all muscle contractions are cardiac muscle.
Example 4 Tony wants to make cookies that call for $\frac{3}{4}$ of a cup of flour, but he only has $\frac{1}{3}$ of a cup. How much more flour does he need?

Step 1 Find the LCD of the fractions.

$$
\frac{3}{4}-\frac{1}{3}(L C D, 12)
$$

Step 2 Rename each numerator and each denominator with the LCD.
$3 \times 3=9,4 \times 3=12$
$1 \times 4=4,3 \times 4=12$
Step 3 Subtract the numerators.

$$
\frac{9}{12}-\frac{4}{12}=\frac{(9-4)}{12}=\frac{5}{12}
$$

$\frac{5}{12}$ of a cup of flour.
Practice Problem Using the information provided to you in Example 3 above, determine how many muscle contractions are voluntary (skeletal muscle).

Math Skill Handbook

Multiply Fractions To multiply with fractions, multiply the numerators and multiply the denominators. Find the simplest form if necessary.

Example Multiply $\frac{3}{5}$ by $\frac{1}{3}$.
Step 1 Multiply the numerators and denominators.
$\frac{3}{5} \times \frac{1}{3}=\frac{(3 \times 1)}{(5 \times 3)}=\frac{3}{15}$
Step 2 Find the GCF.
$\frac{3}{15}(G C F, 3)$
Step 3 Divide the numerator and denominator by the GCF.
$\frac{3}{3}=1, \frac{15}{3}=5$
$\frac{1}{5}$
$\frac{3}{5}$ multiplied by $\frac{1}{3}$ is $\frac{1}{5}$.
Practice Problem Multiply $\frac{3}{14}$ by $\frac{5}{16}$.
Find a Reciprocal Two numbers whose product is 1 are called multiplicative inverses, or reciprocals.

Example Find the reciprocal of $\frac{3}{8}$.
Step 1 Inverse the fraction by putting the denominator on top and the numerator on the bottom.
$\frac{8}{3}$
The reciprocal of $\frac{3}{8}$ is $\frac{8}{3}$.
Practice Problem Find the reciprocal of $\frac{4}{9}$.

Divide Fractions To divide one fraction by another fraction, multiply the dividend by the reciprocal of the divisor. Find the simplest form if necessary.

Example 1 Divide $\frac{1}{9}$ by $\frac{1}{3}$.
Step 1 Find the reciprocal of the divisor.
The reciprocal of $\frac{1}{3}$ is $\frac{3}{1}$.
Step 2 Multiply the dividend by the reciprocal of the divisor.
$\frac{\frac{1}{9}}{\frac{1}{3}}=\frac{1}{9} \times \frac{3}{1}=\frac{(1 \times 3)}{(9 \times 1)}=\frac{3}{9}$
Step 3 Find the GCF.
$\frac{3}{9}(G C F, 3)$
Step 4 Divide the numerator and denominator by the GCF.
$\frac{3}{3}=1, \frac{9}{3}=3$
$\frac{1}{3}$
$\frac{1}{9}$ divided by $\frac{1}{3}$ is $\frac{1}{3}$.
Example 2 Divide $\frac{3}{5}$ by $\frac{1}{4}$.
Step 1 Find the reciprocal of the divisor.
The reciprocal of $\frac{1}{4}$ is $\frac{4}{1}$.
Step 2 Multiply the dividend by the reciprocal of the divisor.
$\frac{\frac{3}{5}}{\frac{1}{4}}=\frac{3}{5} \times \frac{4}{1}=\frac{(3 \times 4)}{(5 \times 1)}=\frac{12}{5}$
$\frac{3}{5}$ divided by $\frac{1}{4}$ is $\frac{12}{5}$ or $2 \frac{2}{5}$.
Practice Problem Divide $\frac{3}{11}$ by $\frac{7}{10}$.

Math Skill Handbook

Use Ratios

When you compare two numbers by division, you are using a ratio. Ratios can be written 3 to 5, 3:5, or $\frac{3}{5}$. Ratios, like fractions, also can be written in simplest form.

Ratios can represent probabilities, also called odds. This is a ratio that compares the number of ways a certain outcome occurs to the number of outcomes. For example, if you flip a coin 100 times, what are the odds that it will come up heads? There are two possible outcomes, heads or tails, so the odds of coming up heads are $50: 100$. Another way to say this is that 50 out of 100 times the coin will come up heads. In its simplest form, the ratio is 1:2.

Example 1 A chemical solution contains 40 g of salt and 64 g of baking soda. What is the ratio of salt to baking soda as a fraction in simplest form?

Step 1 Write the ratio as a fraction.

$$
\frac{\text { salt }}{\text { baking soda }}=\frac{40}{64}
$$

Step 2 Express the fraction in simplest form.
The GCF of 40 and 64 is 8 .

$$
\frac{40}{64}=\frac{40 \div 8}{64 \div 8}=\frac{5}{8}
$$

The ratio of salt to baking soda in the sample is 5:8.
Example 2 Sean rolls a 6 -sided die 6 times. What are the odds that the side with a 3 will show?

Step 1 Write the ratio as a fraction.

$$
\frac{\text { number of sides with a } 3}{\text { number of sides }}=\frac{1}{6}
$$

Step 2 Multiply by the number of attempts. $\frac{1}{6} \times 6$ attempts $=\frac{6}{6}$ attempts $=1$ attempt 1 attempt out of 6 will show a 3 .

Practice Problem Two metal rods measure 100 cm and 144 cm in length. What is the ratio of their lengths in simplest form?

Use Decimals

A fraction with a denominator that is a power of ten can be written as a decimal. For example, 0.27 means $\frac{27}{100}$. The decimal point separates the ones place from the tenths place.

Any fraction can be written as a decimal using division. For example, the fraction $\frac{5}{8}$ can be written as a decimal by dividing 5 by 8. Written as a decimal, it is 0.625 .

Add or Subtract Decimals When adding and subtracting decimals, line up the decimal points before carrying out the operation.

Example 1 Find the sum of 47.68 and 7.80.
Step 1 Line up the decimal places when you write the numbers.
47.68
$+7.80$
Step 2 Add the decimals.
47.68
$\begin{array}{r}+\quad 7.80 \\ \hline 55.48\end{array}$

The sum of 47.68 and 7.80 is 55.48 .

Example 2 Find the difference of 42.17 and 15.85.
Step 1 Line up the decimal places when you write the number.
42.17
-15.85
Step 2 Subtract the decimals.
42.17
$\begin{array}{r}-15.85 \\ \hline 26.32\end{array}$

The difference of 42.17 and 15.85 is 26.32 .

Practice Problem Find the sum of 1.245 and 3.842.

Multiply Decimals To multiply decimals, multiply the numbers like any other number, ignoring the decimal point. Count the decimal places in each factor. The product will have the same number of decimal places as the sum of the decimal places in the factors.

Example Multiply 2.4 by 5.9.
Step 1 Multiply the factors like two whole numbers. $24 \times 59=1416$

Step 2 Find the sum of the number of decimal places in the factors. Each factor has one decimal place, for a sum of two decimal places.

Step 3 The product will have two decimal places. 14.16

The product of 2.4 and 5.9 is 14.16 .
Practice Problem Multiply 4.6 by 2.2.
Divide Decimals When dividing decimals, change the divisor to a whole number. To do this, multiply both the divisor and the dividend by the same power of ten. Then place the decimal point in the quotient directly above the decimal point in the dividend. Then divide as you do with whole numbers.

Example Divide 8.84 by 3.4.
Step 1 Multiply both factors by 10 .

$$
3.4 \times 10=34,8.84 \times 10=88.4
$$

Step 2 Divide 88.4 by 34 .

$$
\begin{aligned}
& 2.6 \\
& 3 4 \longdiv { 8 8 . 4 } \\
& -\frac{68}{204} \\
& -\frac{204}{0}
\end{aligned}
$$

8.84 divided by 3.4 is 2.6 .

Practice Problem Divide 75.6 by 3.6.

Use Proportions

An equation that shows that two ratios are equivalent is a proportion. The ratios $\frac{2}{4}$ and $\frac{5}{10}$ are equivalent, so they can be written as $\frac{2}{4}=\frac{5}{10}$. This equation is a proportion.

When two ratios form a proportion, the cross products are equal. To find the cross products in the proportion $\frac{2}{4}=\frac{5}{10}$, multiply the 2 and the 10 , and the 4 and the 5 . Therefore $2 \times 10=4 \times 5$, or $20=20$.

Because you know that both proportions are equal, you can use cross products to find a missing term in a proportion. This is known as solving the proportion.

Example The heights of a tree and a pole are proportional to the lengths of their shadows. The tree casts a shadow of 24 m when a $6-\mathrm{m}$ pole casts a shadow of 4 m . What is the height of the tree?

Step 1 Write a proportion. $\frac{\text { height of tree }}{\text { height of pole }}=\frac{\text { length of tree's shadow }}{\text { length of pole's shadow }}$
Step 2 Substitute the known values into the proportion. Let h represent the unknown value, the height of the tree.
$\frac{h}{6}=\frac{24}{4}$
Step 3 Find the cross products.

$$
h \times 4=6 \times 24
$$

Step 4 Simplify the equation. $4 h=144$

Step 5 Divide each side by 4 .
$\frac{4 h}{4}=\frac{144}{4}$
$h=36$
The height of the tree is 36 m .
Practice Problem The ratios of the weights of two objects on the Moon and on Earth are in proportion. A rock weighing 3 N on the Moon weighs 18 N on Earth. How much would a rock that weighs 5 N on the Moon weigh on Earth?

Math Skill Handbook

Use Percentages

The word percent means "out of one hundred." It is a ratio that compares a number to 100. Suppose you read that 77 percent of the Earth's surface is covered by water. That is the same as reading that the fraction of the Earth's surface covered by water is $\frac{77}{100}$. To express a fraction as a percent, first find the equivalent decimal for the fraction. Then, multiply the decimal by 100 and add the percent symbol.

Example Express $\frac{13}{20}$ as a percent.
Step 1 Find the equivalent decimal for the fraction.

$$
\begin{array}{r}
0.65 \\
2 0 \longdiv { 1 3 . 0 0 } \\
\frac{120}{100} \\
\frac{100}{0}
\end{array}
$$

Step 2 Rewrite the fraction $\frac{13}{20}$ as 0.65 .
Step 3 Multiply 0.65 by 100 and add the \% sign.

$$
0.65 \times 100=65=65 \%
$$

So, $\frac{13}{20}=65 \%$.
This also can be solved as a proportion.
Example Express $\frac{13}{20}$ as a percent.
Step 1 Write a proportion.

$$
\frac{13}{20}=\frac{x}{100}
$$

Step 2 Find the cross products.

$$
1300=20 x
$$

Step 3 Divide each side by 20.

$$
\begin{aligned}
\frac{1300}{20} & =\frac{20 x}{20} \\
65 \% & =x
\end{aligned}
$$

Practice Problem In one year, 73 of 365 days were rainy in one city. What percent of the days in that city were rainy?

Solve One-Step Equations

A statement that two things are equal is an equation. For example, $A=B$ is an equation that states that A is equal to B.

An equation is solved when a variable is replaced with a value that makes both sides of the equation equal. To make both sides equal the inverse operation is used. Addition and subtraction are inverses, and multiplication and division are inverses.

Example 1 Solve the equation $x-10=35$.
Step 1 Find the solution by adding 10 to each side of the equation.
$x-10=35$
$x-10+10=35+10$
$x=45$
Step 2 Check the solution.

$$
\begin{aligned}
& x-10=35 \\
& 45-10=35 \\
& 35=35
\end{aligned}
$$

Both sides of the equation are equal, so $x=45$.
Example 2 In the formula $a=b c$, find the value of cif $a=20$ and $b=2$.
Step 1 Rearrange the formula so the unknown value is by itself on one side of the equation by dividing both sides by b.
Step 2 Replace the variables a and b with the values that

$$
\frac{a}{b}=c
$$ are given.

$$
\begin{aligned}
a & =b c \\
\frac{a}{b} & =\frac{b c}{b} \\
\frac{a}{b} & =c
\end{aligned}
$$

$$
\frac{20}{2}=c
$$

$$
10=c
$$

Step 3 Check the solution.

$$
\begin{aligned}
a & =b c \\
20 & =2 \times 10 \\
20 & =20
\end{aligned}
$$

Both sides of the equation are equal, so $c=10$ is the solution when $a=20$ and $b=2$.

Practice Problem In the formula $h=g d$, find the value of d if $g=12.3$ and $h=17.4$.

Use Statistics

The branch of mathematics that deals with collecting, analyzing, and presenting data is statistics. In statistics, there are three common ways to summarize data with a single number-the mean, the median, and the mode.

The mean of a set of data is the arithmetic average. It is found by adding the numbers in the data set and dividing by the number of items in the set.

The median is the middle number in a set of data when the data are arranged in numerical order. If there were an even number of data points, the median would be the mean of the two middle numbers.

The mode of a set of data is the number or item that appears most often.

Another number that often is used to describe a set of data is the range. The range is the difference between the largest number and the smallest number in a set of data.

A frequency table shows how many times each piece of data occurs, usually in a survey. Table $\mathbf{2}$ below shows the results of a student survey on favorite color.

Table 2 Student Color Choice		
Color	Tally	Frequency
red	IIII	4
blue	III	5
black	II	2
green	III	3
purple	IIII	7
yellow	HII I	6

Based on the frequency table data, which color is the favorite?

Example The speeds (in m / s) for a race car during five different time trials are $39,37,44,36$, and 44 .

To find the mean:

Step 1 Find the sum of the numbers.
$39+37+44+36+44=200$
Step 2 Divide the sum by the number of items, which is 5 .
$200 \div 5=40$
The mean is $40 \mathrm{~m} / \mathrm{s}$.

To find the median:

Step 1 Arrange the measures from least to greatest. $36,37,39,44,44$

Step 2 Determine the middle measure.
$36,37,39,44,44$
The median is $39 \mathrm{~m} / \mathrm{s}$.

To find the mode:

Step 1 Group the numbers that are the same together.
44, 44, 36, 37, 39
Step 2 Determine the number that occurs most in the set.
44, 44, 36, 37, 39
The mode is $44 \mathrm{~m} / \mathrm{s}$.

To find the range:

Step 1 Arrange the measures from largest to smallest. $44,44,39,37,36$

Step 2 Determine the largest and smallest measures in the set.

44, 44, 39, 37, $\underline{36}$
Step 3 Find the difference between the largest and smallest measures.
$44-36=8$
The range is $8 \mathrm{~m} / \mathrm{s}$.
Practice Problem Find the mean, median, mode, and range for the data set $8,4,12,8,11,14,16$.

Math Skill Handbook

Use Geometry

The branch of mathematics that deals with the measurement, properties, and relationships of points, lines, angles, surfaces, and solids is called geometry.

Perimeter The perimeter (P) is the distance around a geometric figure. To find the perimeter of a rectangle, add the length and width and multiply that sum by two, or $2(l+w)$. To find perimeters of irregular figures, add the length of the sides.

Example 1 Find the perimeter of a rectangle that is 3 m long and 5 m wide.

Step 1 You know that the perimeter is 2 times the sum of the width and length.

$$
P=2(3 m+5 m)
$$

Step 2 Find the sum of the width and length.

$$
P=2(8 \mathrm{~m})
$$

Step 3 Multiply by 2.

$$
P=16 \mathrm{~m}
$$

The perimeter is 16 m .
Example 2 Find the perimeter of a shape with sides measuring $2 \mathrm{~cm}, 5 \mathrm{~cm}, 6 \mathrm{~cm}, 3 \mathrm{~cm}$.

Step 1 You know that the perimeter is the sum of all the sides.
$P=2+5+6+3$
Step 2 Find the sum of the sides.
$P=2+5+6+3$
$P=16$

The perimeter is 16 cm .
Practice Problem Find the perimeter of a rectangle with a length of 18 m and a width of 7 m .

Practice Problem Find the perimeter of a triangle measuring 1.6 cm by 2.4 cm by 2.4 cm .

Area of a Rectangle The area (A) is the number of square units needed to cover a surface. To find the area of a rectangle, multiply the length times the width, or $l \times w$. When finding area, the units also are multiplied. Area is given in square units.

Example Find the area of a rectangle with a length of 1 cm and a width of 10 cm .

Step 1 You know that the area is the length multiplied by the width.
$A=(1 \mathrm{~cm} \times 10 \mathrm{~cm})$
Step 2 Multiply the length by the width. Also multiply the units.
$A=10 \mathrm{~cm}^{2}$
The area is $10 \mathrm{~cm}^{2}$.
Practice Problem Find the area of a square whose sides measure 4 m .

Area of a Triangle To find the area of a triangle, use the formula:
$A=\frac{1}{2}$ (base \times height $)$
The base of a triangle can be any of its sides. The height is the perpendicular distance from a base to the opposite endpoint, or vertex.

Example Find the area of a triangle with a base of 18 m and a height of 7 m .
Step 1 You know that the area is $\frac{1}{2}$ the base times the height.

$$
A=\frac{1}{2}(18 \mathrm{~m} \times 7 \mathrm{~m})
$$

Step 2 Multiply $\frac{1}{2}$ by the product of 18×7. Multiply the units.
$A=\frac{1}{2}\left(126 \mathrm{~m}^{2}\right)$
$A=63 \mathrm{~m}^{2}$
The area is $63 \mathrm{~m}^{2}$.
Practice Problem Find the area of a triangle with a base of 27 cm and a height of 17 cm .

Circumference of a Circle The diameter (d) of a circle is the distance across the circle through its center, and the radius (r) is the distance from the center to any point on the circle. The radius is half of the diameter. The distance around the circle is called the circumference (C). The formula for finding the circumference is:
$\mathrm{C}=2 \pi r$ or $\mathrm{C}=\pi d$
The circumference divided by the diameter is always equal to 3.1415926 ... This nonterminating and nonrepeating number is represented by the Greek letter π (pi). An approximation often used for π is 3.14.

Example 1 Find the circumference of a circle with a radius of 3 m .
Step 1 You know the formula for the circumference is 2 times the radius times π.
$C=2 \pi(3)$
Step 2 Multiply 2 times the radius.

$$
C=6 \pi
$$

Step 3 Multiply by π.
$\mathrm{C}=19 \mathrm{~m}$
The circumference is 19 m .
Example 2 Find the circumference of a circle with a diameter of 24.0 cm .
Step 1 You know the formula for the circumference is the diameter times π.
$C=\pi(24.0)$
Step 2 Multiply the diameter by π.
$\mathrm{C}=75.4 \mathrm{~cm}$
The circumference is 75.4 cm .
Practice Problem Find the circumference of a circle with a radius of 19 cm .

Area of a Circle The formula for the area of a circle is:
$A=\pi r^{2}$
Example 1 Find the area of a circle with a radius of 4.0 cm .

Step $1 A=\pi(4.0)^{2}$
Step 2 Find the square of the radius. $A=16 \pi$

Step 3 Multiply the square of the radius by π. $A=50 \mathrm{~cm}^{2}$

The area of the circle is $50 \mathrm{~cm}^{2}$.
Example 2 Find the area of a circle with a radius of 225 m .
Step $1 A=\pi(225)^{2}$
Step 2 Find the square of the radius.

$$
A=50625 \pi
$$

Step 3 Multiply the square of the radius by π.

$$
A=158962.5
$$

The area of the circle is $158,962 \mathrm{~m}^{2}$.
Example 3 Find the area of a circle whose diameter is 20.0 mm .

Step 1 You know the formula for the area of a circle is the square of the radius times π, and that the radius is half of the diameter.

$$
A=\pi\left(\frac{20.0}{2}\right)^{2}
$$

Step 2 Find the radius.

$$
A=\pi(10.0)^{2}
$$

Step 3 Find the square of the radius.
$A=100 \pi$
Step 4 Multiply the square of the radius by π. $A=314 \mathrm{~mm}^{2}$

The area is $314 \mathrm{~mm}^{2}$.

Practice Problem Find the area of a circle with a radius of 16 m .

Math Skill Handbook

Volume The measure of space occupied by a solid is the volume (V). To find the volume of a rectangular solid multiply the length times width times height, or $V=l \times w \times h$. It is measured in cubic units, such as cubic centimeters $\left(\mathrm{cm}^{3}\right)$.

Example Find the volume of a rectangular solid with a length of 2.0 m , a width of 4.0 m , and a height of 3.0 m .

Step 1 You know the formula for volume is the length times the width times the height.

$$
V=2.0 \mathrm{~m} \times 4.0 \mathrm{~m} \times 3.0 \mathrm{~m}
$$

Step 2 Multiply the length times the width times the height.
$V=24 \mathrm{~m}^{3}$
The volume is $24 \mathrm{~m}^{3}$.
Practice Problem Find the volume of a rectangular solid that is 8 m long, 4 m wide, and 4 m high.

To find the volume of other solids, multiply the area of the base times the height.

Example 1 Find the volume of a solid that has a triangular base with a length of 8.0 m and a height of 7.0 m . The height of the entire solid is 15.0 m .

Step 1 You know that the base is a triangle, and the area of a triangle is $\frac{1}{2}$ the base times the height, and the volume is the area of the base times the height.
$V=\left[\frac{1}{2}(\mathrm{~b} \times \mathrm{h})\right] \times 15$
Step 2 Find the area of the base.
$V=\left[\frac{1}{2}(8 \times 7)\right] \times 15$
$V=\left(\frac{1}{2} \times 56\right) \times 15$
Step 3 Multiply the area of the base by the height of the solid.
$V=28 \times 15$
$V=420 \mathrm{~m}^{3}$

Example 2 Find the volume of a cylinder that has a base with a radius of 12.0 cm , and a height of 21.0 cm .

Step 1 You know that the base is a circle, and the area of a circle is the square of the radius times π, and the volume is the area of the base times the height.
$V=\left(\pi r^{2}\right) \times 21$
$V=\left(\pi 12^{2}\right) \times 21$
Step 2 Find the area of the base.
$V=144 \pi \times 21$
$V=452 \times 21$
Step 3 Multiply the area of the base by the height of the solid.
$V=9490 \mathrm{~cm}^{3}$
The volume is $9490 \mathrm{~cm}^{3}$.
Example 3 Find the volume of a cylinder that has a diameter of 15 mm and a height of 4.8 mm .

Step 1 You know that the base is a circle with an area equal to the square of the radius times π.The radius is one-half the diameter. The volume is the area of the base times the height.
$V=\left(\pi r^{2}\right) \times 4.8$
$V=\left[\pi\left(\frac{1}{2} \times 15\right)^{2}\right] \times 4.8$
$V=\left(\pi 7.5^{2}\right) \times 4.8$
Step 2 Find the area of the base.
$V=56.25 \pi \times 4.8$
$V=176.63 \times 4.8$
Step 3 Multiply the area of the base by the height of the solid.
$V=847.8$
The volume is $847.8 \mathrm{~mm}^{3}$.
Practice Problem Find the volume of a cylinder with a diameter of 7 cm in the base and a height of 16 cm .

The volume is $420 \mathrm{~m}^{3}$.

Science Applications

Measure in SI

The metric system of measurement was developed in 1795. A modern form of the metric system, called the International System (SI), was adopted in 1960 and provides the standard measurements that all scientists around the world can understand.

The SI system is convenient because unit sizes vary by powers of 10 . Prefixes are used to name units. Look at Table $\mathbf{3}$ for some common SI prefixes and their meanings.

Table 3 Common SI Prefixes			
Prefix	Symbol	Meaning	
kilo-	k	1,000	thousand
hecto-	h	100	hundred
deka-	da	10	ten
deci-	d	0.1	tenth
centi-	c	0.01	hundredth
milli-	m	0.001	thousandth

Example How many grams equal one kilogram?
Step 1 Find the prefix kilo in Table 3.
Step 2 Using Table 3, determine the meaning of kilo. According to the table, it means 1,000 . When the prefix kilo is added to a unit, it means that there are 1,000 of the units in a "kilounit."

Step 3 Apply the prefix to the units in the question. The units in the question are grams. There are 1,000 grams in a kilogram.

Practice Problem Is a milligram larger or smaller than a gram? How many of the smaller units equal one larger unit? What fraction of the larger unit does one smaller unit represent?

Dimensional Analysis

Convert SI Units In science, quantities such as length, mass, and time sometimes are measured using different units. A process called dimensional analysis can be used to change one unit of measure to another. This process involves multiplying your starting quantity and units by one or more conversion factors. A conversion factor is a ratio equal to one and can be made from any two equal quantities with different units. If 1,000 mL equal 1 L then two ratios can be made.
$\frac{1,000 \mathrm{~mL}}{1 \mathrm{~L}}=\frac{1 \mathrm{~L}}{1,000 \mathrm{~mL}}=1$
One can covert between units in the SI system by using the equivalents in Table 3 to make conversion factors.

Example 1 How many cm are in 4 m ?
Step 1 Write conversion factors for the units given.
From Table 3, you know that $100 \mathrm{~cm}=1 \mathrm{~m}$.
The conversion factors are
$\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}$ and $\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}$
Step 2 Decide which conversion factor to use. Select the factor that has the units you are converting from (m) in the denominator and the units you are converting to (cm) in the numerator.
$\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}$
Step 3 Multiply the starting quantity and units by the conversion factor. Cancel the starting units with the units in the denominator. There are 400 cm in 4 m .
$4 \mathrm{~m} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}=400 \mathrm{~cm}$
Practice Problem How many milligrams are in one kilogram? (Hint:You will need to use two conversion factors from Table 3.)

Table 4 Unit System Equivalents

Type of Measurement	Equivalent
Length	$1 \mathrm{in}=2.54 \mathrm{~cm}$
	$1 \mathrm{yd}=0.91 \mathrm{~m}$
	$1 \mathrm{mi}=1.61 \mathrm{~km}$
Mass	$1 \mathrm{oz}=28.35 \mathrm{~g}$
and	
Weight*	$1 \mathrm{Ib}=0.45 \mathrm{~kg}$
	1 ton (short) $=0.91$ tonnes (metric tons)
	$1 \mathrm{Ib}=4.45 \mathrm{~N}$
Volume	$1 \mathrm{in}^{3}=16.39 \mathrm{~cm}^{3}$
	$1 \mathrm{qt}=0.95 \mathrm{~L}$
	$1 \mathrm{gal}=3.78 \mathrm{~L}$
Area	$1 \mathrm{in}^{2}=6.45 \mathrm{~cm}^{2}$
	$1 \mathrm{yd}^{2}=0.83 \mathrm{~m}^{2}$
	$1 \mathrm{mi}^{2}=2.59 \mathrm{~km}^{2}$
	$1 \mathrm{acre}^{2}=0.40 \mathrm{hectares}$
Temperature	${ }^{\circ} \mathrm{C}=\left({ }^{\circ} \mathrm{F}-32\right)$
	$\mathrm{K}={ }^{\circ} \mathrm{C}+273$

*Weight is measured in standard Earth gravity.

Convert Between Unit Systems Table 4 gives a list of equivalents that can be used to convert between English and SI units.

Example If a meterstick has a length of 100 cm , how long is the meterstick in inches?

Step 1 Write the conversion factors for the units given. From Table 4, $1 \mathrm{in}=2.54 \mathrm{~cm}$.
$\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}$ and $\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}$
Step 2 Determine which conversion factor to use. You are converting from cm to in. Use the conversion factor with cm on the bottom.
$\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}$

Step 3 Multiply the starting quantity and units by the conversion factor. Cancel the starting units with the units in the denominator. Round your answer based on the number of significant figures in the conversion factor.
$100 \mathrm{~cm} \times \frac{1 \mathrm{in}}{2.54 \mathrm{~cm}}=39.37 \mathrm{in}$
The meterstick is 39.4 in long.
Practice Problem A book has a mass of 5 lbs . What is the mass of the book in kg?

Practice Problem Use the equivalent for in and cm ($1 \mathrm{in}=2.54 \mathrm{~cm}$) to show how $1 \mathrm{in}^{3}=16.39 \mathrm{~cm}^{3}$.

Math Skill Handbook

Precision and Significant Digits

When you make a measurement, the value you record depends on the precision of the measuring instrument. This precision is represented by the number of significant digits recorded in the measurement. When counting the number of significant digits, all digits are counted except zeros at the end of a number with no decimal point such as 2,050 , and zeros at the beginning of a decimal such as 0.03020 . When adding or subtracting numbers with different precision, round the answer to the smallest number of decimal places of any number in the sum or difference. When multiplying or dividing, the answer is rounded to the smallest number of significant digits of any number being multiplied or divided.

Example The lengths 5.28 and 5.2 are measured in meters. Find the sum of these lengths and record your answer using the correct number of significant digits.
Step 1 Find the sum.

5.28 m	2 digits after the decimal
+5.2 m	

Step 2 Round to one digit after the decimal because the least number of digits after the decimal of the numbers being added is 1 .

The sum is 10.5 m .
Practice Problem How many significant digits are in the measurement $7,071,301 \mathrm{~m}$? How many significant digits are in the measurement 0.003010 g ?

Practice Problem Multiply 5.28 and 5.2 using the rule for multiplying and dividing. Record the answer using the correct number of significant digits.

Scientific Notation

Many times numbers used in science are very small or very large. Because these numbers are difficult to work with scientists use scientific notation. To write numbers in scientific notation, move the decimal point until only one non-zero digit remains on the left. Then count the number of places you moved the decimal point and use that number as a power of ten. For example, the average distance from the Sun to Mars is $227,800,000,000 \mathrm{~m}$. In scientific notation, this distance is $2.278 \times 10^{11} \mathrm{~m}$. Because you moved the decimal point to the left, the number is a positive power of ten.

The mass of an electron is about 0.000000000000000000000000000000911 kg . Expressed in scientific notation, this mass is $9.11 \times 10^{-31} \mathrm{~kg}$. Because the decimal point was moved to the right, the number is a negative power of ten.

Example Earth is 149,600,000 km from the Sun. Express this in scientific notation.

Step 1 Move the decimal point until one non-zero digit remains on the left. 1.49600000

Step 2 Count the number of decimal places you have moved. In this case, eight.
Step 3 Show that number as a power of ten, 10^{8}.
The Earth is $1.496 \times 10^{8} \mathrm{~km}$ from the Sun.

Practice Problem How many significant digits are in $149,600,000 \mathrm{~km}$? How many significant digits are in $1.496 \times 10^{8} \mathrm{~km}$?

Practice Problem Parts used in a high performance car must be measured to $7 \times 10^{-6} \mathrm{~m}$. Express this number as a decimal.

Practice Problem A CD is spinning at 539 revolutions per minute. Express this number in scientific notation.

Make and Use Graphs

Data in tables can be displayed in a graph-a visual representation of data. Common graph types include line graphs, bar graphs, and circle graphs.

Line Graph A line graph shows a relationship between two variables that change continuously. The independent variable is changed and is plotted on the x-axis. The dependent variable is observed, and is plotted on the y-axis.

Example Draw a line graph of the data below from a cyclist in a long-distance race.

Table $\mathbf{5}$ Bicycle Race Data	
Time (h)	Distance (km)
0	0
1	8
2	16
3	24
4	32
5	40

Step 1 Determine the x-axis and y-axis variables. Time varies independently of distance and is plotted on the x-axis. Distance is dependent on time and is plotted on the y-axis.

Step 2 Determine the scale of each axis. The x-axis data ranges from 0 to 5 . The y-axis data ranges from 0 to 40.

Step 3 Using graph paper, draw and label the axes. Include units in the labels.

Step 4 Draw a point at the intersection of the time value on the x-axis and corresponding distance value on the y-axis. Connect the points and label the graph with a title, as shown in Figure 20.

Distance v. Time

Figure 20 This line graph shows the relationship between distance and time during a bicycle ride.

Practice Problem A puppy's shoulder height is measured during the first year of her life. The following measurements were collected: ($3 \mathrm{mo}, 52 \mathrm{~cm}$), ($6 \mathrm{mo}, 72 \mathrm{~cm}$), ($9 \mathrm{mo}, 83 \mathrm{~cm}$), ($12 \mathrm{mo}, 86 \mathrm{~cm}$). Graph this data.

Find a Slope The slope of a straight line is the ratio of the vertical change, rise, to the horizontal change, run.

Slope $=\frac{\text { vertical change (rise) }}{\text { horizontal change (run) }}=\frac{\text { change in } y}{\text { change in } x}$
Example Find the slope of the graph in Figure 20.
Step 1 You know that the slope is the change in y divided by the change in x.
Slope $=\frac{\text { change in } y}{\text { change in } x}$
Step 2 Determine the data points you will be using. For a straight line, choose the two sets of points that are the farthest apart.
Slope $=\frac{(40-0) \mathrm{km}}{(5-0) \mathrm{hr}}$
Step 3 Find the change in y and x.
Slope $=\frac{40 \mathrm{~km}}{5 \mathrm{~h}}$
Step 4 Divide the change in y by the change in x.
Slope $=\frac{8 \mathrm{~km}}{\mathrm{~h}}$
The slope of the graph is $8 \mathrm{~km} / \mathrm{h}$.

Math Skill Handbook

Bar Graph To compare data that does not change continuously you might choose a bar graph. A bar graph uses bars to show the relationships between variables. The x-axis variable is divided into parts. The parts can be numbers such as years, or a category such as a type of animal. The y-axis is a number and increases continuously along the axis.

Example A recycling center collects 4.0 kg of aluminum on Monday, 1.0 kg on Wednesday, and 2.0 kg on Friday. Create a bar graph of this data.
Step 1 Select the x-axis and y-axis variables. The measured numbers (the masses of aluminum) should be placed on the y-axis. The variable divided into parts (collection days) is placed on the x-axis.

Step 2 Create a graph grid like you would for a line graph. Include labels and units.

Step 3 For each measured number, draw a vertical bar above the x-axis value up to the y-axis value. For the first data point, draw a vertical bar above Monday up to 4.0 kg .

Practice Problem Draw a bar graph of the gases in air: 78\% nitrogen, 21% oxygen, 1% other gases.

Circle Graph To display data as parts of a whole, you might use a circle graph. A circle graph is a circle divided into sections that represent the relative size of each piece of data. The entire circle represents 100%, half represents 50%, and so on.

Example Air is made up of 78% nitrogen, 21% oxygen, and 1% other gases. Display the composition of air in a circle graph.
Step 1 Multiply each percent by 360° and divide by 100 to find the angle of each section in the circle.
$78 \% \times \frac{360^{\circ}}{100}=280.8^{\circ}$
$21 \% \times \frac{360^{\circ}}{100}=75.6^{\circ}$
$1 \% \times \frac{360^{\circ}}{100}=3.6^{\circ}$
Step 2 Use a compass to draw a circle and to mark the center of the circle. Draw a straight line from the center to the edge of the circle.

Step 3 Use a protractor and the angles you calculated to divide the circle into parts. Place the center of the protractor over the center of the circle and line the base of the protractor over the straight line.

Practice Problem Draw a circle graph to represent the amount of aluminum collected during the week shown in the bar graph to the left.

Physical Science Reference Tables

Standard Units

Symbol	Name	Quantity
m	meter	length
kg	kilogram	mass
Pa	pascal	pressure
K	kelvin	temperature
mol	mole	amount of a substance
J	joule	energy, work, quantity of heat
s	second	time
C	coulomb	electric charge
V	volt	electric potential
A	ampere	electric current
Ω	ohm	resistance

Physical Constants and Conversion Factors

Acceleration due to gravity	g	$9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s} \mathrm{or} \mathrm{m} / \mathrm{s}^{2}$
Avogadro's Number	N_{A}	6.02×10^{23} particles per mole
Electron charge	e	$1.6 \times 10^{-19} \mathrm{C}$
Electron rest mass	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Gravitation constant	G	$6.67 \times 10^{-11} \mathrm{~N} \times \mathrm{m}^{2} / \mathrm{kg}^{2}$
Mass-energy relationship		$1 \mathrm{u}(\mathrm{amu})=9.3 \times 10^{2} \mathrm{MeV}$
Speed of light in a vacuum	C	$3.00 \times 108 \mathrm{~m} / \mathrm{s}$
Speed of sound at STP	$331 \mathrm{~m} / \mathrm{s}$	
Standard Pressure	1 atmosphere	
	101.3 kPa	
	760 Torr or mmHg	
	$14.7 \mathrm{lb} / \mathrm{in}.{ }^{2}$	

Wavelengths of Light in a Vacuum

Violet	$4.0-4.2 \times 10^{-7} \mathrm{~m}$
Blue	$4.2-4.9 \times 10^{-7} \mathrm{~m}$
Green	$4.9-5.7 \times 10^{-7} \mathrm{~m}$
Yellow	$5.7-5.9 \times 10^{-7} \mathrm{~m}$
Orange	$5.9-6.5 \times 10^{-7} \mathrm{~m}$
Red	$6.5-7.0 \times 10^{-7} \mathrm{~m}$

The Index of Refraction for Common Substances

$$
\left(\lambda=5.9 \times 10^{-7} \mathrm{~m}\right)
$$

Air

Alcohol

Glycerol $\quad 1.47$
Lucite 1.50

Quartz, Fused 1.46
Water $\quad 1.33$

	Specific Heat (average) $\left(\mathrm{kJ} / \mathrm{kg} \times{ }^{\circ} \mathrm{C}\right)$	Melting $\left(\mathrm{J} / \mathrm{g} \times{ }^{\circ} \mathrm{C}\right)$	Boiling $\left({ }^{\circ} \mathrm{C}\right)$	Heat of Point $\left({ }^{\circ} \mathrm{C}\right)$	Heat of Fusion $(\mathrm{kJ} / \mathrm{kg})$
	2.43 (liq.)	-117		$(\mathrm{~J} / \mathrm{g})$	Vaporization $(\mathrm{kJ} / \mathrm{kg})$
	0.90 (sol.)	660	79	109	$(\mathrm{~J} / \mathrm{g})$

Reference Handbooks

PERIODIC TABLE OF THE ELEMENTS

Reference Handbooks

Visit bookk.msscience.com for updates to the periodic table.

The color of an element's block tells you if the element is a metal, nonmetal, or metalloid.

* The names and symbols for elements 111-114 are temporary. Final names will be selected when the elements' discoveries are verified.
** Elements 116 and 118 were thought to have been created. The claim was retracted because the experimental results could not be repeated.

Reference Handbooks

Heat Constants

Atomic number and chemical symbol

82	84	86	88	90	92

- ${ }_{2}^{4} \mathrm{He}$ (α particle) Helium nucleus emission
$\longrightarrow{ }_{-1}^{0} \mathrm{e}$ (β particle) electron emission

Glossary/Glosario

Cómo usar el glosario en español:

1. Busca el término en inglés que desees encontrar.
2. El término en español, junto con la definición, se encuentran en la columna de la derecha.

Pronunciation Key

Use the following key to help you sound out words in the glossary.

a................back (BAK)	ew food (FEWD)
ay.............. day (DAY)	yoo pure (PYOOR)
ah. father (FAH thur)	yew few (FYEW)
ow flower (FLOW ur)	uhcomma (CAH muh)
ar...............car (CAR)	$\mathbf{u}(+$ con) rub (RUB)
e................ less (LES)	sh.............. shelf (SHELF)
ee............... leaf (LEEF)	ch............... nature (NAY chur)
ih...............trip (TRIHP)	g................gift (GIHFT)
$\mathbf{i}(\mathrm{i}+$ con +e$)$. . idea (i DEE uh)	jgem (JEM)
ohgo go (GOH)	ing..............sing (SING)
aw soft (SAWFT)	zh.............. vision (VIH zhun)
or.............. orbit (OR buht)	k. cake (KAYK)
oy.............. coin (COYN)	s................ seed, cent (SEED, SENT)
oofoot (FOOT)	z................ zone, raise (ZOHN, RAYZ)

English

Español
actinide: the second series of inner transition elements which goes from thorium to lawrencium. (p. 114)
alkali metals: elements in group 1 of the periodic table. (p. 105)
alkaline earth metals: elements in group 2 of the periodic table. (p. 106)
Archimedes' (ar kuh MEE deez) principle: states that the buoyant force on an object is equal to the weight of the fluid displaced by the object. (p. 59)
atomic mass: average mass of an atom of an element; its unit of measure is the atomic mass unit (u), which is $1 / 12$ the mass of a carbon-12 atom. (p. 22)
atomic number: number of protons in the nucleus of each atom of a given element; is the top number in the periodic table. (p. 21)
actínido: la segunda serie de los elementos de transición interna que abarca desde el torio hasta el laurencio. (p. 114)
metales alcalinos: elementos en el grupo 1 de la tabla periódica. (p. 105)
metales alcalinotérreos: elementos en el grupo 2 de la tabla periódica. (p. 106)
principio de Arquímedes: establece que la fuerza de empuje ejercida sobre un objeto es igual al peso del fluido desplazado por dicho objeto. (p. 59)
masa atómica: masa promedio de un átomo de un elemento; su unidad de medida es la unidad de masa atómica (u), la cual es $1 / 12$ de la masa de un átomo de carbono 12. (p. 22)
número atómico: número de protones en el núcleo de cada átomo de un determinado elemento; es el número que se encuentra en la parte superior en la tabla periódica. (p. 21)

B

buoyant force: upward force exerted on an object immersed in a fluid. (p. 58)
fuerza de empuje: fuerza ascendente ejercida sobre un objeto inmerso en un fluido. (p. 58)

Glossary/Glosario

catalyst: substance that can make something happen faster but is not changed itself. (p. 113)
chemical change: change in which the composition of a substance changes. (p. 80)
chemical property: characteristic that cannot be observed without altering the sample. (p. 76)
compound: a substance produced when elements combine and whose properties are different from each of the elements in it. (p. 25)
condensation: the process of changing from a gas to a liquid. (pp. 51, 79)
catalizador: sustancia que puede hacer que algo suceda más rápidamente sin cambiar ella misma. (p. 113)
cambio químico: cambio en el cual la composición de una sustancia es modificada. (p. 80)
propiedad química: característica que no puede ser observada sin alterar la muestra. (p. 76)
compuesto: sustancia producida por la combinación de elementos y cuyas propiedades son diferentes de las de cada uno de los elementos. (p. 25)
condensación: el proceso de cambio de gas a líquido. (pp. 51, 79)

D

density: mass of an object divided by its volume. (p. 59)
deposition: the process by which a gas changes into a solid. (p. 79)
densidad: masa de un objeto dividida por su volumen. (p. 59)
deposición: el proceso mediante el cual un gas pasa a ser sólido. (p. 79)

E

electron: negatively-charged particle that exists in an electron cloud formation around an atom's nucleus. (p. 11)
electron cloud: region surrounding the nucleus of an atom, where electrons are most likely to be found. (p. 17)
element: substance that cannot be broken down into simpler substances. (p. 9)
electrón: partícula con carga negativa que existe en una nube de electrones alrededor del núcleo del átomo. (p. 11)
nube de electrones: región que rodea el núcleo de un átomo, en donde los electrones se encuentran con mayor probabilidad. (p. 17)
elemento: sustancia que no se puede descomponer en sustancias más simples. (p. 9)
freezing: change of matter from a liquid state to a solid state. (p. 49)
congelación: cambio de la materia de estado líquido a sólido. (p. 49)
gas: matter that does not have a definite shape or volume; has particles that move at high speeds in all directions. (p. 44)
group: family of elements in the periodic table that have similar physical or chemical properties. (p. 99)
gas: materia que no tiene ni forma ni volumen definidos; tiene partículas que se mueven a altas velocidades y en todas las direcciones. (p. 44) grupo: familia de elementos en la tabla periódica que tienen propiedades físicas o químicas similares. (p. 99)
halogen: elements in group 17 of the periodic table. (p. 110)
heat: movement of thermal energy from a substance at a higher temperature to a substance at a lower temperature. (p. 46)
halógenos: elementos en el grupo 17 de la tabla periódica. (p. 110)
calor: movimiento de energía térmica de una sustancia que se encuentra a una alta temperatura hacia una sustancia a una baja temperatura. (p. 46)
isotopes (I suh tohps): two or more atoms of the same element that have different numbers of neutrons in their nuclei. (p. 21)
isótopos: dos o más átomos del mismo elemento que tienen diferente número de neutrones en sus núcleos. (p. 21)

L

lanthanide: the first series of inner transition elements which goes from cerium to lutetium. (p. 114)
law of conservation of mass: states that mass is neither created nor destroyed-and as a result the mass of the substances before a physical or chemical change is equal to the mass of the substances present after the change. (p. 87)
liquid: matter with a definite volume but no definite shape that can flow from one place to another. (p. 42)
lantánidos: la primera serie de los elementos de transición interna que va desde el cerio hasta el lutecio. (p. 114)
ley de la conservación de masas: establece que la masa no puede ser creada ni destruida; como resultado, la masa de una sustancia antes de un cambio físico o químico es igual a la masa presente de la sustancia después del cambio. (p. 87)
líquido: materia con volumen definido pero no con forma definida que puede fluir de un sitio a otro. (p. 42)
mass number: sum of the number of protons and neutrons in the nucleus of an atom. (p. 21)
matter: anything that takes up space and has mass. (p. 40)
melting: change of matter from a solid state to a liquid state. (p. 47)
metal: element that is malleable, ductile, a good conductor of electricity, and generally has a shiny or metallic luster. (pp. 22, 102)
metalloid (MEH tuh loyd): element that shares some properties with both metals and nonmetals. (pp. 23, 102)
mixture: a combination of compounds and elements that has not formed a new substance and whose proportions can be changed without changing the mixture's identity. (p. 27)
número de masa: suma del número de protones y neutrones en el núcleo de un átomo. (p. 21)
materia: cualquier cosa que ocupe espacio y tenga masa. (p. 40)
fusión: cambio de la materia de estado sólido a líquido. (p. 47)
metal: elemento maleable, dúctil, buen conductor de electricidad y generalmente con un lustre brillante o metálico. (pp. 22, 102)
metaloide: elemento que comparte algunas propiedades de los metales y de los no metales. (pp. 23, 102)
mezcla: combinación de compuestos y elementos sin llegar a formar una nueva sustancia y cuyas proporciones pueden cambiar sin que se modifique la identidad de la mezcla. (p. 27)
neutron (NEW trahn): electrically-neutral particle that has the same mass as a proton and is found in an atom's nucleus. (p. 15)
noble gases: elements in group 18 of the periodic table. (p. 110)
nonmetal: element that is usually a gas or brittle solid at room temperature and is a poor conductor of heat and electricity. (pp. 23, 102)
neutrón: partícula eléctricamente neutra que tiene la misma masa que un protón y se encuentra en el núcleo de un átomo. (p. 15)
gases inertes: elementos en el grupo 18 de la tabla periódica. (p. 110)
no metal: elemento que por lo general es un gas o un sólido frágil a temperatura ambiente y mal conductor de calor y electricidad. (pp. 23, 102)

Pascal's principle: states that when a force is applied to a confined fluid, an increase in pressure is transmitted equally to all parts of the fluid. (p. 60)
period: horizontal row of elements in the periodic table whose properties change gradually and predictably. (p. 99)
physical change: change in which the form or appearance of matter changes, but not its composition. (p. 78)
physical property: characteristic that can be observed, using the five senses, without changing or trying to change the composition of a substance. (p. 72)
pressure: force exerted on a surface divided by the total area over which the force is exerted. (p. 54)
proton: positively-charged particle in the nucleus of an atom. (p. 14)
principio de Pascal: establece que cuando se ejerce una fuerza sobre un fluido encerrado, se transmite un incremento de presión uniforme a todas las partes del fluido. (p. 60)
período: fila horizontal de elementos en la tabla periódica cuyas propiedades cambian gradualmente y en forma predecible. (p. 99)
cambio físico: cambio en el cual varía la forma o apariencia de la materia pero no su composición. (p. 78) propiedad física: característica que puede ser observada usando los cinco sentidos sin cambiar o tratar de cambiar la composición de una sustancia. (p. 72) presión: fuerza ejercida sobre una superficie dividida por el área total sobre la cual se ejerce dicha fuerza. (p. 54) protón: partícula con carga positiva en el núcleo de un átomo. (p. 14)

R

representative elements: elements in groups 1 and 2 and $13-18$ in the periodic table that include metals, metalloids, and nonmetals. (p. 99)
elementos representativos: elementos en los grupos 1 y 2 y 13-18 en la tabla periódica; incluyen metales, metaloides y no metales. (p. 99)
semiconductor: element that does not conduct electricity as well as a metal but conducts it better than a nonmetal. (p. 107)
solid: matter with a definite shape and volume; has tightly packed particles that move mainly by vibrating. (p. 41)
sublimation: the process by which a solid changes directly into a gas. (p. 79)
semiconductor: elemento que no conduce electricidad tan bien como un metal pero que la conduce mejor que un no metal. (p. 107)
sólido: materia con forma y volumen definidos; tiene partículas fuertemente compactadas que se mueven principalmente por vibración. (p. 41)
sublimación: proceso mediante el cual un sólido se convierte directamente en gas. (p. 79)

Glossary/Glosario

substance/viscosity

substance: matter that has the same composition and properties throughout. (p. 25)
surface tension: the uneven forces acting on the particles on the surface of a liquid. (p. 43)
sustancia: materia que tiene la misma composición y propiedades en cada una de sus partes. (p. 25)
tensión superficial: fuerzas desiguales que actúan sobre las partículas que se encuentran en la superficie de un líquido. (p. 43)
temperature: measure of the average kinetic energy of the individual particles of a substance. (p. 46)
transition elements: elements in groups 3-12 in the periodic table, all of which are metals. (p. 99)
temperatura: medida de la energía cinética prome dio de las partículas individuales de una sustancia. (p. 46)
elementos de transición: elementos en los grupos 3-12 en la tabla periódica, todos los cuales son metales. (p. 99)
vaporization: the process by which a liquid changes into a gas. (pp. 50, 79)
viscosity: a liquid's resistance to flow. (p. 43)
vaporización: proceso mediante el cual un líquido se convierte en gas. (pp. 50, 79)
viscosidad: resistencia de un líquido al flujo. (p. 43)

> Italic numbers = illustration/photo Bold numbers = vocabulary term
> lab = a page on which the entry is used in a lab
> act = a page on which the entry is used in an activity

A

Actinides, 114, 115
Activities, Applying Math, 59, 84; Applying Science, 27, 49, 103; Integrate Astronomy, 83;
Integrate Earth Science, 29, 42; Integrate Health, 116; Integrate Life Science, 28, 81, 109; Integrate Physics, 16, 46, 114; Science Online, 19, 28, 43, 49, 51, 61, 81, 102, 116; Standardized Test Practice, 36-37, 68-69, 94-95, 124-125
Alkali metals, 105, 105
Alkaline earth metals, 106, 106
Alpha particles, $12,13,13,14,16$
Aluminum, 106
Amalgam, 116
Americium, 114
Ammonia, 75, 108, 108
Amorphous solids, 42, 47, 47
Applying Math, Calculating
Density, 59; Chapter Review, 35, 67, 93, 123; Converting Temperatures, 84; Section Review, 23, 29, 76, 87, 104
Applying Science, How can ice save oranges?, 49; What does periodic mean in the periodic table?, 103; What's the best way to desalt ocean water?, 27
Applying Skills, 44, 111, 116
Archimedes' principle, 59, 59, 62-63 lab
Area, and pressure, 55, 55
Argon, 111, 111
Arsenic, 109
Astatine, 110
Atmospheric pressure, 55, 55-57, 56
Atom(s), 8-17; history of, 8-17; mass number of, 21 ; model of, 9, 9-17, 12, 14, 15, 15 lab; nucleus of, $14,14-16,15,16$

Atomic mass, 22, 22
Atomic number, 21

Balanced pressure, 56, 56
Batteries, lithium, 105
Behavior, as physical property, 75, 75
Beryllium, 106
Blood, as mixture, 27, 27, 28
Blood pressure, 61 act
Bohr, Niels, 16, 17
Boiling point, 50, 50; as physical property, 74, 75
Boron, 106
Boron family, 106, 106
Bromine, 75, 110
Buoyant force, 58, 58-59, 59, 62-63 lab
Burning, 84, 84

Calcium carbonate, 75
Californium-252, 114
Carbon, 107, 107
Carbon dioxide, 25
Carbon group, 107, 107
Carbon monoxide, 25
Catalysts, 113, 113
Cathode-ray tube (CRT), 10, 10, 11, 11
Cerium, 114, 114
Chemical changes, 80, 80-85; color, 81,81 ; comparing to physical changes, 81 lab, 85,85 ; and energy, 82,82 ; recognizing, 81 act; reversing, 84, 84; signs of, $81,81-84,82,83,84$
Chemical formulas, 26
Chemical properties, 76, 76, 77 lab
Chemistry, 8
Chlorine, 22, 22, 110, 110

Chlorophyll, 81
Chromium, 113
Classification, of elements, 19, 20, 22-23
Cobalt, 112
Communicating Your Data, 24, 31, 53, 63, 77, 89, 119
Compound(s), 25, 25-26, 26; comparing, 26 lab ; formulas for, 26, 26
Computers, and semiconductors, 107, 107
Condensation, 48, 51, 51, 51 act, 79, 79
Conservation, of mass, 87, 87
Crookes, William, 9, 10
Crystal, 41, 41
Crystalline solids, 41, 41, 47
Cycles, water, 53 lab

Dalton, John, 9, 20
Data Source, 118
Density, 59, 59 act
Dentistry, elements used in, 116
Deposition, 79
Desalination, 27 act
Design Your Own, Battle of the
Toothpastes, 88-89; Design
Your Own Ship, 62-63
Diamond, 107
Dissolving, as physical change, 79, 79
Dry ice, 52, 52
Ductility, 22

Electron(s), 11, 16-17, 17
Electron cloud, 17, 17
Element(s), 9, 18-23, 102 act; atomic mass of, 22, 22; atomic
number of, 21;
boron family of, 106, 106; carbon group of, 107, 107; classification of, 19, 20, 22-23; halogens, 110, 110; identifying characteristics of, 21-22; isotopes of, 21, 21; metalloids, $23,102,102,106,107$, 107, 109, 110; metals, 22, 22, 102, 102, 105, 105-106, 106, 107, 107, 112-116; new, 19 act; nitrogen group of, 108, 108; noble gases, 110, 110-111, 111; nonmetals, $23,23,102,102,107,107,108$, $108,109,110,110$; oxygen family of, 109, 109; periodic table of, 19, 20, 21, 24 lab. See Periodic table; radioactive, 114,115 ; representative, 99; symbols for, $19,20,104$; synthetic, 18,114 , 115; transition, 99, 112, 112-116, 113, 114, 115
Element keys, 103, 103
Energy, and chemical changes, 82, 82; thermal, 45, 45-46; types of, 46
Eruptions, volcanic, 70, 70-71
Europium oxide, 114
Evaporation, 48, 50, $50 \mathrm{lab}, 50-51$

Fertilizer, 108, 108
Firefighting, foam for, 109, 109
Fireworks, 80, 80
Flint, 114, 114
Fluids, 54-61. See Liquid(s). See also Gas(es); and Archimedes' principle, 59, 59, 62-63 lab; and buoyant force, 58, 58-59, 59, 62-63 lab; and density, 59, 59 act; and Pascal's principle, 60, 60-61, 61; and pressure, 54-58
Fluoride, 116
Fluorine, 110
Foam, for firefighting, 109, 109
Foldables, 7, 39, 71, 97
Force(s), 54 ; and area, 55,55 ; buoyant, 58, 58-59, 59, 62-63 lab; measurement of, 54; and pressure, 54-58
Force pumps, 61, 61
Formulas, chemical, 26; for compounds, 26, 26

Freezing, 39 lab, 48, 49, 79, 79
Freezing point, 49, 49 act, 75
Fusion, 115

Gallium, 106
Gas(es), 44, 44. See also Fluids; and chemical changes, 83, 83; condensation of, 48, 51, 51, 51 act; pressure of, 57, 57-58, 58
Germanium, 107
Glass, 47, 47, 107
Graphite, 107
Group, 19, 99

H

Halogens, 110, 110
Health, and heavy metals, 118-119 lab; and mercury, 116 act
Heart, 61, 61
Heat, 46; specific, 47, 47; and temperature, 46-47
Heavy metals, 107, 107, 113, 118-119 lab
Helium, 110, 111, 111
Hemoglobin, 112
Heterogeneous mixtures, 29
Homogeneous mixtures, 29
Hydraulic systems, 60, 60
Hydrogen peroxide, 26, 26
Hydrogen v. helium, 110

Ice, dry, 52, 52
Inner transition elements, 114, 114, 115
Integrate Astronomy, meteoroid, 83
Integrate Earth Science,
freshwater, 42; rocks and minerals, 29
Integrate Health, dentistry and dental materials, 116
Integrate Life Science, blood as a mixture, 28; poison buildup, 109; signs of chemical changes, 81
Integrate Physics, bright lights, 114; quantum theory, 16; types of energy, 46

International Union of Pure and Applied Chemistry (IUPAC), 104
Iodine, 75, 110
Iridium, 113
Iron, 112, 114
Iron triad, 112, 112
Isotopes, 21, 21

Journal, 6, 38, 70, 96

Kilopascal (kPa), 54
Krypton, 111

Lab(s), Design Your Own, 62-63, 88-89; Elements and the Periodic Table, 24; Finding the Difference, 77; Launch Labs, 7, 39, 71, 97; Mini Labs, 26, 50, 74, 75, 99; Mystery Mixture, 30-31; Try at Home Mini Labs, 15, 57, 81; Use the Internet, 118-119; Water Cycle, 53
Lanthanides, 114, 114
Lanthanum, 114, 114
Launch Labs, Changing Face of a Volcano, 71; Experiment with a Freezing Liquid, 39; Make a Model of a Periodic Pattern, 97; Model the Unseen, 7
Lava, 71 lab
Lavoisier, Antoine, 20, 87
Lawrencium, 114
Law(s), of conservation of mass, 87, 87
Lead, 107, 107, 114
Leaves, changing colors of, 81,81
Lightbulb, 113, 113
Liquid(s), 42, 42-43, 43. See also Fluids; freezing, 39 lab, 48, 49; and surface tension, 43, 43; vaporization of, 48, $50 \mathrm{lab}, 50$, 50-51; viscosity of, 43
Lithium, 105
Lodestone, 75, 75
Luster, 22
Lutetium, 114

m

Magnesium, 106
Magnetic properties, 75, 75, 112
Malleability, 20, 20
Mass, conservation of, 87, 87
Mass number, 21
Materials, semiconductors, 107, 107
Matter, 40. See also States of matter; ancient views of, 8,32 ; appearance of, 73,73 ; compounds, 25, 25-26, 26; describing, 72-77, 77 lab; elements in, 18-23, 24 lab
Measurement, of force, 54; of properties, 74 lab; of weight, 74
Meitner, Lise, 104
Melting, 47, 47, 48, 79, 79
Melting point, 47, 74, 75
Mendeleev, Dmitri, 20, 98, 98, 99
Mercury, 113, 116, 116 act
$\operatorname{Metal}(\mathrm{s}), 22,22,102$; alkali, 105, 105; alkaline earth, 106, 106; as catalysts, 113, 113; heavy, 107, 107, 113, 118-119 lab; iron triad, 112, 112; misch, 114, 114; on periodic table, 102, 102, 105, 105-106, 106, 107, 107, 112-116; transition, 112, 112-116, 113, 114, 115
Metalloids, 23, 102, 102, 106, 107, 107, 109, 110
Meteoroid, 83
Mineral(s), 29
Mini Labs, Comparing Compounds, 26; Designing a Periodic Table, 99; Identifying an Unknown Substance, 75; Measuring Properties, 74; Observing Vaporization, 50
Misch metal, 114, 114
Mixtures, 27-31, 28 act; blood as, $27,27,28$; heterogeneous, 29; homogeneous, 29; identifying, 30-31 lab; separating, 28, 28
$\operatorname{Model}(\mathrm{s})$, of atom, 9, 9-17, 12, 14, 15, 15 lab; of unseen, 7 lab
Moseley, Henry, 99

National Geographic Visualizing,
The Periodic Table, 20;
Recycling, 86; States of Matter, 48; Synthetic Elements, 115
Neodymium, 114, 114
Neon, 73, 111, 111
Neutron(s), 15
Newton (unit of force), 54
Nickel, 112
Nitrogen, 108, 108
Nitrogen group, 108, 108
Noble gases, 110, 110-111, 111
Nonmetals, 23, 23, 102, 102, 107, $107,108,108,109,110,110$
Nucleus, 14, 14-16, 15, 16

Ocean water, desalination of, 27 act; salt in, 27 act
Odor, and chemical changes, 83
Oil (petroleum), 73
Oops! Accidents in Science,
Incredible Stretching Goo, 64
Osmium, 113
Oxygen, on periodic table, 109, 109
Oxygen family, 109, 109
Ozone, 109

Palladium, 113
Particle(s), alpha, 12-13, 13, 14, 16; charged, 11-13
Particle accelerator, 115, 115
Pascal (Pa), 54
Pascal's principle, 60, 60-61, 61
Period, 19, 99
Periodic pattern, making models of, 97 lab
Periodic table, 19, 20, 21, 24 lab, 96-117, 100-101; boron family on, 106, 106; carbon group on, 107, 107; designing, 99 lab; development of, 98, 98-99; element keys on, 103, 103; halogens on, 110, 110; metalloids on, 102, 102, 106, 107, 107, 109, 110;
metals on, 102, 102, 105, 105-106, 106, 107, 112-116; nitrogen group on, 108,108 ; noble gases on, 110 , 110-111, 111; nonmetals on, 102, 102, 107, 107, 108, 108, 109, 110, 110; oxygen family on, 109, 109; symbols for elements on, 104; zones on, 99, 99, 102, 102-104, 103
Phosphorus, 108, 108
Physical changes, 78, 78-79, 79; comparing to chemical changes, 81 lab, 85,85 ; reversing, 84
Physical properties, 72, 72-75, 74, 77 lab; appearance, 73, 73; behavior, 75,75 ; boiling point, 74, 75; magnetic, $75,75,112$; measuring, 74 lab; melting point, 74,75 ; state, 73,73
Pigment, 81
Pistons, 60, 60
Plant(s), chlorophyll in, 81; leaves of, 81,81
Plasma, 43 act
Platinum, 113
Platinum group, 113
Plutonium, 114
Poisons, 99
Polonium, 109
Potassium, 105
Potassium hydroxide, 75
Pressure, 54, 54-58; and area, 55, 55; atmospheric, 55, 55-57, 56; balanced, 56,56 ; and force, 54-58; of gas, 57, 57-58, 58; and temperature, 58,58 ; and volume, 57, 57
Properties, chemical, 76, 76, 77 lab; comparing, 71 lab; magnetic, 75, 75, 112; physical. See Physical properties
Protactinium, 114
Proton(s), 14

Quantum theory, 16
Quartz, 107

Radioactive elements, 114, 115

Radon, 111

Reading Check, 10, 12, 14, 15, 21, $26,27,40,41,42,44,46,51,55$, $58,72,75,80,84,102,106,108$, $110,111,112,114,116$
Real-World Questions, 24, 30, 53, 62, 77, 88, 118
Recycling, 86, 90, 90
Representative elements, 99
Rhodium, 113
Rock(s), 29
Rust, 80, 80
Ruthenium, 113
Rutherford, Ernest, 12-13, 14

Salt(s), 105, 110, 110; and chemical changes, 82,82 ; crystal structure of, 41, 41; physical properties of, 75
Sand, 107
Science and History, Ancient Views of Matter, 32
Science and Language Arts, "Anansi Tries to Steal All the Wisdom in the World," 120
Science Online, blood pressure, 61; condensation, 51 ; elements, 102; freezing point study, 49; health risks, 116; mixtures, 28; new elements, 19; plasma, 43; recognizing chemical changes, 81
Science Stats, Strange Changes, 90
Scientific Methods, 24, 30-31, 53, 62-63, 77, 88-89, 117, 118-119; Analyze Your Data, 31, 63, 89, 119; Conclude and Apply, 24, 31, 53, 63, 77, 89, 119; Follow Your Plan, 63, 119; Form a Hypothesis, 62, 88; Make a Plan, 63, 119; Test Your Hypothesis, 63, 89
Selenium, 109, 109
Semiconductors, 107, 107
Shape, changes of, 78, 78
Ship, designing, 62-63
Silicon, 107, 107
Silver tarnish, 80, 80
Smell, and chemical changes, 83
Sodium chloride, 41, 41, 75, 105, 110, 110. See also Salt(s)

Solid(s), 41, 41-42; amorphous, $42,47,47$; and chemical changes, 83,83 ; crystalline, 41 , 41, 47; melting, 47, 47, 48; sublimation of, 52, 52
Space shuttle, 25
Specific heat, 47, 47
Spring scale, 74
Standardized Test Practice, 36-37, 68-69, 94-95, 124-125
States of matter, 38-63, 40; changes of, 45-53, 53 lab ; and condensation, 48, 51, 51, 51 lab; and evaporation, 48, 50, 50 lab , 50-51; fluids, 54-61, 58, 59, 59 act, 60, 61, 62-63 lab; and freezing, 39 lab, 48, 49; gases, 44, 44; liquids, 42, 42-43, 43; and melting, 47, 47, 48; as physical change, 79,79 ; as physical property, 73,73 ; and pressure, 54-58; solids, 41, 41-42; and sublimation, 52 , 52 ; and vaporization, 48, 50, 50 lab, 50-51
Steel, 112, 112
Study Guide, 33, 65, 91, 121
Sublimation, 52, 52, 79
Substance, 25
Sugars, dissolving, 79, 79
Sulfur, 109
Sulfuric acid, 109
Surface tension, 43, 43
Symbols, for elements, 19, 20, 104
Synthetic elements, 18, 114, 115

Tarnish, 80, 80
Technology, cathode-ray tube (CRT), 10, 10, 11, 11; computers, 107, 107; in dentistry, 116; fireworks, 80,80 ; lightbulb, 113, 113; particle accelerator, 115,115 ; semiconductors, 107, 107; space shuttle, 25 ; spring scale, 74 ; synthetic elements, 114, 115; Tevatron, 18
Teeth, 88-89 lab. See also Dentistry
Tellurium, 109
Temperature, 46, 46; and heat, 46-47; and pressure, 58, 58
Tevatron, 18

Water, boiling point of, 50,50 ; changes of state of, 79, 79; freshwater, 42; melting point of, 47; physical properties of, 75
Water cycle, 53 lab
Waterfalls, 57 lab
Wave(s), electron as, 17
Weight, measuring, 74

Xenon, 111

Yttrium oxide, 114

Thermal energy, 45, 45-46
Thomson, J. J., 11-12, 14
Thorium, 114
TIME, Science and History, 32
Tin, 107
Toothpastes, comparing, 88-89 lab
Transition elements, 99, 112,
112-116, 113; in dentistry, 116; inner, 114, 114, 115
Try at Home MiniLabs, Comparing Changes, 81; Modeling the Nuclear Atom, 15; Predicting a Waterfall, 57
Tungsten, 113, 113

Unknown, finding, 59 act, 84 act
Uranium, 114, 115
Use the Internet, Health Risks from Heavy Metals, 118-119

Vapor, 44
Vaporization, 48, 50, 50 lab, 50-51, 79, 79
Viscosity, 43
Volcanoes, changing face of, 71 lab; eruptions of, 70, 70-71
Volume, and pressure, 57, 57

w

Magnification Key: Magnifications listed are the magnifications at which images were originally photographed.
LM-Light Microscope
SEM-Scanning Electron Microscope
TEM-Transmission Electron Microscope
Acknowledgments: Glencoe would like to acknowledge the artists and agencies who participated in illustrating this program: Absolute Science Illustration; Andrew Evansen; Argosy; Articulate Graphics; Craig Attebery represented by Frank \& Jeff Lavaty; CHK America; John Edwards and Associates; Gagliano Graphics; Pedro Julio Gonzalez represented by Melissa Turk \& The Artist Network; Robert Hynes represented by Mendola Ltd.; Morgan Cain \& Associates; JTH Illustration; Laurie O'Keefe; Matthew Pippin represented by Beranbaum Artist's Representative; Precision Graphics; Publisher's Art; Rolin Graphics, Inc.; Wendy Smith represented by Melissa Turk \& The Artist Network; Kevin Torline represented by Berendsen and Associates, Inc.; WILDlife ART; Phil Wilson represented by Cliff Knecht Artist Representative; Zoo Botanica.

Photo Credits

Cover Roine Magnusson/Stone; i ii Roine Magnusson/Stone; iv (bkgd)John Evans, (inset)Roine Magnusson/Stone; v (t)PhotoDisc, (b)John Evans; vi (l)John Evans, (r)Geoff Butler; vii (l)John Evans, (r)PhotoDisc; viii PhotoDisc; ix Aaron Haupt Photography; x Roger Ressmeyer/CORBIS; xi SuperStock; xii Richard Megna/Fundamental Photographs; 1 Joseph Sohm/ChromoSohm, Inc./CORBIS; 2 Charles O’Rear/CORBIS; 3 (t)Charlie Varley/Sipa, (b)Philip Hayson/ Photo Researchers; 4 Charles O'Rear/CORBIS; 5 Charlie Varley/SIPA; 6-7 courtesy IBM; 8 EyeWire; 9 (tl)Culver Pictures/PictureQuest, (tr)E.A. Heiniger/Photo Researchers, (b)Andy Roberts/Stone/Getty Images; 10 Elena Rooraid/ PhotoEdit, Inc.; 11 (t)L.S. Stepanowicz/Panographics, (b)Skip Comer; 12 Aaron Haupt; 16 Fraser Hall/Robert Harding Picture Library; 18 Fermi National Accelerator Laboratory/ Science Photo Library/Photo Researchers; 19 Tom Stewart/ The Stock Market/CORBIS; 20 (bkgd tr bl)Bettmann/ CORBIS, (br)New York Public Library, General Research Division, Astor, Lenox, and Tilden Foundations; 22 Emmanuel Scorcelletti/Liaison Agency/Getty Images; 24 Doug Martin; 25 NASA; 26 Mark Burnett; 27 Klaus Guldbrandsen/Science Photo Library/Photo Researchers; 28 (tl)Mark Thayer, (tr)CORBIS, (bl)Kenneth Mengay/ Liaison Agency/Getty Images, (bc)Arthur Hill/Visuals Unlimited, (br)RMIP/Richard Haynes; 28-29 KS Studios; 30 (t)Mark Burnett, (b)Michael Newman/PhotoEdit, Inc.; 32 (tl)Robert Essel/The Stock Market/CORBIS, (tr)John Eastcott \& Yva Momatiuk/DRK Photo, (cr)Diaphor Agency/ Index Stock, (bl)Ame Hodalic/CORBIS, (br)TIME; 38-39 Roger Ressmeyer/CORBIS; 40 Layne Kennedy/ CORBIS; 41 (t)Telegraph Colour Library/FPG/Getty Images, (b)Paul Silverman/Fundamental Photographs; 42 Bill Aron/ PhotoEdit, Inc.; 43 (l)John Serrao/Photo Researchers, (r)H. Richard Johnston; 44 Tom Tracy/Photo Network/ PictureQuest; 45 Annie Griffiths Belt/CORBIS; 46 Amanita Pictures; 47 (t)David Weintraub/Stock Boston, (b)James L. Amos/Peter Arnold, Inc.; 48 Dave King/DK Images; 49 Joseph Sohm/ChromoSohm, Inc./CORBIS; 50 Michael Dalton/Fundamental Photographs; 51 Swarthout \&

Associates/The Stock Market/CORBIS; 52 Tony Freeman/ PhotoEdit, Inc. 54 David Young-Wolff/PhotoEdit, Inc.; 55 (t)Joshua Ets-Hokin/PhotoDisc, (b)Richard Hutchings; 56 Robbie Jack/CORBIS; 58 A. Ramey/Stock Boston; 59 Mark Burnett; 60 (t)Tony Freeman/PhotoEdit, Inc., (b)Stephen Simpson/FPG/Getty Images; 62 (t)Lester Lefkowitz/The Stock Market/CORBIS, (b)Bob Daemmrich; 63 Bob Daemmrich; 64 Daniel Belknap; 65 (1)Andrew Ward/ Life File/PhotoDisc, (r)NASA/TRACE; 67 Mark Burnett; 69 Joshua Ets-Hokin/PhotoDisc; 70-71 James L. Amos/ CORBIS; 72 Fred Habegger from Grant Heilman; 73 (tr)David Nunuk/Science Photo Library/Photo Researchers, (cr)Mark Burnett, (bl)David Schultz/Stone/ Getty Images, (bc)SuperStock, (br)Kent Knudson/PhotoDisc; 74 KS Studios; 75 Gary Retherford/Photo Researchers; 76 (1)Peter Steiner/The Stock Market/CORBIS, (c)Tom \& DeeAnn McCarthy/The Stock Market/CORBIS, (r)SuperStock; 77 Timothy Fuller; 78 (l)Gay Bumgarner/ Stone/Getty Images, (r)A. Goldsmith/The Stock Market/ CORBIS; 79 (t)Matt Meadows, (others)Richard Megna/ Fundamental Photographs; 80 (tl)Ed Pritchard/Stone/Getty Images, (cl bl)Kip Peticolas/Fundamental Photographs, (tr br)Richard Megna/Fundamental Photographs; 81 Rich Iwasaki/Stone/Getty Images; 82 (t)Matt Meadows, (bc)Layne Kennedy/CORBIS, (bl br)Runk/Schoenberger from Grant Heilman; 83 (t)Amanita Pictures, (b)Richard Megna/ Fundamental Photographs; 84 Anthony Cooper/Ecoscene/ CORBIS; 85 (tl)Russell Illig/PhotoDisc, (tcl)John D. Cunningham/Visuals Unlimited, (tcr)Coco McCoy/Rainbow/ PictureQuest, (bl)Bonnie Kamin/PhotoEdit, Inc., (tr br) SuperStock; 86 (t)Grantpix/Photo Researchers, (c)Mark Sherman/Photo Network/PictureQuest, (bl)Sculpture by Maya Lin, courtesy Wexner Center for the Arts, Ohio State Univ., photo by Darnell Lautt, (br)Rainbow/PictureQuest; 87 Mark Burnett; 8889 Matt Meadows; 90 (l)Susan Kinast/ Foodpix/Getty Images, (r)Michael Newman/PhotoEdit, Inc.; 91 (l)C. Squared Studios/PhotoDisc, (r)Kip Peticolas/ Fundamental Photographs; 94 Elaine Shay; 95 (1)Kurt Scholz/SuperStock, (r)CORBIS; 96-97 Jim Corwin/Index Stock; 98 Stamp from the collection of Prof. C.M. Lang, photo by Gary Shulfer, University of WI Stevens Point; 102 (tl)Tom Pantages, (tr)Elaine Shay, (bl)Paul Silverman/ Fundamental Photographs; 105 Amanita Pictures; 106 (l)Joail Hans Stern/Liaison Agency/Getty Images, (r)Leonard Freed/Magnum/PictureQuest; 107 (l)David Young-Wolff/PhotoEdit/PictureQuest, (c)Jane Sapinsky/The Stock Market/CORBIS, (r)Dan McCoy/Rainbow/ PictureQuest; 108 (t)George Hall/CORBIS, (b)Aaron Haupt; 109 SuperStock; 110 (t)Don Farrall/PhotoDisc, (b)Matt Meadows; 111 (l)file photo, (r)Bill Freund/CORBIS; 112 CORBIS; 113 (t)Geoff Butler, (b)Royalty-Free/CORBIS; 114 Amanita Pictures; 115 (1)Achim Zschau, (r)Ted Streshinsky/CORBIS; 118 Robert Essel NYC/CORBIS; 119 Mark Burnett; 120 Tim Flach/Stone/Getty Images; 121 (l)Yoav Levy/PhotoTake NYC/PictureQuest, (r)Louvre, Paris/Bridgeman Art Library, London/New York; 122 Matt Meadows; 126 PhotoDisc; 128 Tom Pantages; 132 Michell D. Bridwell/PhotoEdit, Inc.; 133 (t)Mark Burnett, (b)Dominic Oldershaw; 134 StudiOhio; 135 Timothy Fuller; 136 Aaron Haupt; $\mathbf{1 3 8}$ KS Studios; 139 Matt Meadows; 140 Mark Burnett; 142 Amanita Pictures; 143 Bob Daemmrich; 145 Davis Barber/PhotoEdit, Inc.

